初中的數(shù)學總復習必備資料_第1頁
初中的數(shù)學總復習必備資料_第2頁
初中的數(shù)學總復習必備資料_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

初中的數(shù)學總復習必備資料1.軸對稱:把一個圖形沿著某一條直線折疊,假如它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線對稱,兩個圖形中的對應點叫做對稱點,對應線段叫做對稱線段。

2.軸對稱圖形:假如一個圖形沿著一條直線折疊,直線兩旁的部分能夠相互重合,那么這個圖形叫做軸對稱圖形,這條直線就是它的對稱軸。

留意:對稱軸是直線而不是線段

3.軸對稱的性質:

(1)關于某條直線對稱的兩個圖形是全等形;

(2)假如兩個圖形關于某條直線對稱,那么對稱軸是對應點連線的垂直平分線;

(3)兩個圖形關于某條直線對稱,假如它們的對應線段或延長線相交,那么交點在對稱軸上;

(4)假如兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱。

4.線段垂直平分線:

(1)定義:垂直平分一條線段的直線是這條線的垂直平分線。

(2)性質:

①線段垂直平分線上的點到這條線段兩個端點的距離相等;

②到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

留意:依據(jù)線段垂直平分線的這一特性可以推出:三角形三邊的垂直平分線交于一點,并且這一點到三個頂點的距離相等。

5.角的平分線:

(1)定義:把一個角分成兩個相等的角的射線叫做角的平分線.

(2)性質:

①在角的平分線上的點到這個角的兩邊的距離相等.

②到一個角的兩邊距離相等的點,在這個角的平分線上.

留意:依據(jù)角平分線的性質,三角形的三個內角的平分線交于一點,并且這一點到三條邊的距離相等.

6.等腰三角形的性質與判定:

性質:

(1)對稱性:等腰三角形是軸對稱圖形,等腰三角形底邊上的中線所在的直線是它的對稱軸,或底邊上的高所在的直線是它的對稱軸,或頂角的平分線所在的直線是它的對稱軸;

(2)三線合一:等腰三角形頂角的平分線、底邊上的中線、底邊上的高相互重合;

(3)等邊對等角:等腰三角形的兩個底角相等。

說明:等腰三角形的性質除“三線合一”外,三角形中的主要線段之間也存在著特別的性質,如:

①等腰三角形兩底角的平分線相等;

②等腰三角形兩腰上的中線相等;

③等腰三角形兩腰上的高相等;

④等腰三角形底邊上的中點到兩腰的距離相等。

判定定理:假如一個三角形的兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。

7.等邊三角形的性質與判定:

性質:(1)等邊三角形的三個角都相等,并且每個角都等于60°;

(2)等邊三角形具有等腰三角形的全部性質,并且在每條邊上都有“三線合一”。因此等邊三角形是軸對稱圖形,它有三條對稱軸,而等腰三角形(非等邊三角形)只有一條對稱軸。

判定定理:有一個角是60°的等腰三角形是等邊三角形。

說明:等邊三角形是一種特別的三角形,簡單知道等邊三角形的三條高(或三條中線、三條角平分線)都相等。

二、中心對稱與中心對稱圖形:

1.中心對稱:把一個圖形圍著某一個點旋轉180°,假如它能夠和另外一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱,這個點叫做對稱中心,這兩個圖形中的對應點叫做關于中心的對稱點。

2.中心對稱圖形:在平面內,一個圖形繞某個點旋轉180°,假如旋轉前后的圖形相互重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。

3.中心對稱的性質:

(1)關于中心對稱的兩個圖形是全等形;

(2)在成中心對稱的兩個圖形中,連接對稱點的線段都經(jīng)過對稱中心,并且被對稱中心平分;

(3)成中心對稱的兩個圖形,對應線段平行(或在同始終線上)且相等。

學校的數(shù)學總復習必備資料2

學問點1:一元二次方程的基本概念

1、一元二次方程3x2+5x-2=0的常數(shù)項是-2。

2、一元二次方程3x2+4x-2=0的一次項系數(shù)為4,常數(shù)項是-2。

3、一元二次方程3x2-5x-7=0的二次項系數(shù)為3,常數(shù)項是-7。

4、把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0。

學問點2:直角坐標系與點的位置

1、直角坐標系中,點A(3,0)在y軸上。

2、直角坐標系中,x軸上的任意點的橫坐標為0。

3、直角坐標系中,點A(1,1)在第一象限。

4、直角坐標系中,點A(-2,3)在第四象限。

5、直角坐標系中,點A(-2,1)在其次象限。

學問點3:已知自變量的值求函數(shù)值

1、當x=2時,函數(shù)y=的值為1。

2、當x=3時,函數(shù)y=的值為1。

3、當x=-1時,函數(shù)y=的值為1。

學問點4:基本函數(shù)的概念及性質

1、函數(shù)y=-8x是一次函數(shù)。

2、函數(shù)y=4x+1是正比例函數(shù)。

3、函數(shù)是反比例函數(shù)。

4、拋物線y=-3(x-2)2-5的開口向下。

5、拋物線y=4(x-3)2-10的對稱軸是x=3。

6、拋物線的頂點坐標是(1,2)。

7、反比例函數(shù)的圖象在第一、三象限。

學問點5:數(shù)據(jù)的平均數(shù)中位數(shù)與眾數(shù)

1、數(shù)據(jù)13,10,12,8,7的平均數(shù)是10。

2、數(shù)據(jù)3,4,2,4,4的眾數(shù)是4。

3、數(shù)據(jù)1,2,3,4,5的中位數(shù)是3。

學問點6:特別三角函數(shù)值

1.cos30°=。

2.sin260°+cos260°=1。

3.2sin30°+tan45°=2。

4.tan45°=1。

5.cos60°+sin30°=1。

學問點7:圓的基本性質

1、半圓或直徑所對的圓周角是直角。

2、任意一個三角形肯定有一個外接圓。

3、在同一平面內,到定點的距離等于定長的點的.軌跡,是以定點為圓心,定長為半徑的圓。

4、在同圓或等圓中,相等的圓心角所對的弧相等。

5、同弧所對的圓周角等于圓心角的一半。

6、同圓或等圓的半徑相等。

7、過三個點肯定可以作一個圓。

8、長度相等的兩條弧是等弧。

9、在同圓或等圓中,相等的圓心角所對的弧相等。

10、經(jīng)過圓心平分弦的直徑垂直于弦。

學問點8:直線與圓的位置關系

1、直線與圓有公共點時,叫做直線與圓相切。

2、三角形的外接圓的圓心叫做三角形的外

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論