教育與心理統(tǒng)計五相關關系_第1頁
教育與心理統(tǒng)計五相關關系_第2頁
教育與心理統(tǒng)計五相關關系_第3頁
教育與心理統(tǒng)計五相關關系_第4頁
教育與心理統(tǒng)計五相關關系_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

教育與心理統(tǒng)計五相關關系第一頁,共三十八頁,編輯于2023年,星期六一、相關、相關關系與散點圖1、相關的意義事物之間的相互關系

因果關系(兩種事物)共變關系(三種事物)相關關系(兩種事物)相關的含義——事物之間存在關系,但又不能直接做因果關系解釋時,稱事物間的聯(lián)系為相關?!袛鄡蓚€因素或變量之間是否有關系,定量地研究這些關系,稱為相關分析。相關的類別:正相關:兩個變量向相同的方向變化.即一個變量增加,另一個變量也增加.

負相關:兩個變量向相反的方向變化.即一個變量增加,另一個變量反而減少.零相關:兩列變量之間沒有關系,即6一列變量變動時,另一列變量作無規(guī)律變動。第二頁,共三十八頁,編輯于2023年,星期六2、相關系數(shù)——兩列變量間相關程度的數(shù)字表現(xiàn)形式,即用來表示相關系數(shù)強度的指標。P(總體)r(樣本)不相關,相互獨立正相關負相關完全正相關完全負相關越接近1,表示兩個變量的相關程度越密切,稱高相關。越接近0,表示兩個變量的相關程度越疏松,稱低相關。第三頁,共三十八頁,編輯于2023年,星期六3、相關散點圖直觀地顯示了兩個事物的成對觀測值之間是否存在相關,存在什么樣的相關以及相關程度第四頁,共三十八頁,編輯于2023年,星期六幾種相關散點圖:線性

(如身高和體重)非線性(如年齡和身高)曲線相關線性正相關R=-1R=1線性負相關零相關第五頁,共三十八頁,編輯于2023年,星期六二、積差相關英國Pearson1、定義公式若記則第六頁,共三十八頁,編輯于2023年,星期六2、積差相關適用條件①

要求成對數(shù)據(jù)②

兩列變量各自總體的分布都是正態(tài)③

兩個相關的變量是連續(xù)變量,也即兩列數(shù)據(jù)都是測量數(shù)據(jù)④

兩列變量之間的關系是直線性的,如果是非直線性的雙列變量,不能計算線性相關。判斷兩列變量之間的相關是否為直線式,可作相關散點圖進行初步分析,也可查閱已有研究結果論證。第七頁,共三十八頁,編輯于2023年,星期六3、計算公式第八頁,共三十八頁,編輯于2023年,星期六4、標準分數(shù)的計算公式第九頁,共三十八頁,編輯于2023年,星期六實例:書P116(例5-1)第十頁,共三十八頁,編輯于2023年,星期六5、相關系數(shù)的合并意義:來自同一總體的多個樣本的相關系數(shù)的合成。步驟:(1)將各樣本的r轉換成費舍Z分數(shù),見附表8。(2)求每一樣本的Z分數(shù)之和(3)求平均Z分數(shù)例子:P123(例5-2)第十一頁,共三十八頁,編輯于2023年,星期六三、等級相關(一)斯皮爾曼等級相關(Spearman’sRankCorrelationCofficient)

斯皮爾曼等級相關是等級相關的一種,適用于只有兩列變量,而且是屬于等級變量性質(zhì)具有線性關系的資料

其中:N成對數(shù)D=Rx-Ry

對偶等級之差請注意:盡可能不出現(xiàn)相同等級,即不能并列排名,否則誤差大1、定義公式:第十二頁,共三十八頁,編輯于2023年,星期六2、相同等級計算方法(1)將連續(xù)變量轉化為等級變量求相關——兩個變量排序的方式要一致——遇到相同等級時,要求他們的等級平均值例:X10098979793939390

等級123.53.56668第十三頁,共三十八頁,編輯于2023年,星期六(2)校正公式其中:其中:D:對偶等級差n:各變量相同等級數(shù)第十四頁,共三十八頁,編輯于2023年,星期六例子:P128(例5-5)3、計算條件(1)必須成對數(shù)據(jù)(2)必須都是等級變量(3)正態(tài)條件不明或非正態(tài)時,轉為等級求r第十五頁,共三十八頁,編輯于2023年,星期六(二)肯德爾等級相關(KendallRankCorrelationCofficient)1、肯德爾W系數(shù)(1)適用資料肯德爾W系數(shù)又稱為肯德爾和諧系數(shù)(theKendallcofficientofconcordance)是表示多列等級變量相關程度的一種方法。這種資料的獲得一般采用等級評定的方法,即讓K個被試(或稱評價者)對N件事物或作品進行等級評定,這樣便可得到K列從1到N的等級變量資料;另一種情況是一個評價者先后K次評價N件事物或作品,采用等級評定的方法,這樣,同樣得到K列從1到N的等級變量資料。對這樣的K列等級變量資料求相關,用肯德爾W系數(shù)。**用于三個或三個以上變量等級的相關系數(shù),即求幾個變量的一致性或和諧性第十六頁,共三十八頁,編輯于2023年,星期六(2)肯德爾W系數(shù)計算公式基本公式:其中:Ri:每一件被評價事物的K個等級之和N:被評價事物的件數(shù)即等級數(shù)K:評價者的數(shù)目或等級變量的列數(shù)

R:評價等級和的平均數(shù)第十七頁,共三十八頁,編輯于2023年,星期六校正公式(出現(xiàn)相同等級的計算)例子:P132(例5-7)第十八頁,共三十八頁,編輯于2023年,星期六2、肯德爾U系數(shù)(1)適用資料評價者采用對偶比較的方法,將N件事物兩兩配對,然后對每一對中兩事物進行比較,擇優(yōu)選擇,優(yōu)者記1,非優(yōu)者記0,最后整理成相對應的評價結果。(2)計算公式其中:N:被評事物的數(shù)目,即等級數(shù)K:評價者的數(shù)目rij:對偶比較記錄表格中的擇優(yōu)分數(shù)例子:書P133(5-8)第十九頁,共三十八頁,編輯于2023年,星期六四、質(zhì)與量相關

定義:需要計算相關的兩更變量一列為等比或等距的測量數(shù)據(jù),另一列是按性質(zhì)劃分的類別,欲求這樣兩列變量的直線相關,稱之為質(zhì)量相關,包括點二列相關、二列(雙列)相關及多系列相關。**質(zhì)量相關是研究連續(xù)變量與二分變量的相關關系。

有一種變量,只有兩個取值,稱為二分變量(1、0)人為劃分為兩個取值,稱人為二分變量(及格、不及格)若有等級之分,稱二分等級變量若無等級之分,稱二分稱名變量(男、女)第二十頁,共三十八頁,編輯于2023年,星期六1、點二列相關(1)適用資料

兩列變量,一列為來自正態(tài)分布的等距或等比測量數(shù)據(jù)的連續(xù)變量,另一列變量是二分稱名變量或整體不服從正態(tài)的二分等級變量,(2)公式及計算(P136)**該相關系數(shù)的正負號無意義,只根據(jù)絕對值的大小加以解釋。第二十一頁,共三十八頁,編輯于2023年,星期六2、二列相關

(1)適用資料兩列變量,都為連續(xù)變量均屬于正態(tài)分布,一列變量等距或等比,另一列為人為的二分變量。(2)公式及計算單項選擇題用點二列,主觀題評分用二列。

qpy第二十二頁,共三十八頁,編輯于2023年,星期六例下表為10名考生一次測驗的卷面總分和一道問答題的得分,試求該問答題的區(qū)分度(該問答題滿分為10分,因此得6分和6分以上則認為該題通過)考生ABCDEFGHIJ卷面總分75577365675663616567問答題得分7674744476第二十三頁,共三十八頁,編輯于2023年,星期六解:問答題得分被人為劃為通過、不通過兩類,本題應求雙列相關。根據(jù)題意可得:第二十四頁,共三十八頁,編輯于2023年,星期六3、多列相關(1)適用資料:適合處理兩列正態(tài)變量資料,其中一列為等距或等比變量的測量數(shù)據(jù),另一列被人為分為多種類別,稱為名義變量。分為三類就叫作三列相關,四類就叫做四類相關。(2)公式及計算見(P140)第二十五頁,共三十八頁,編輯于2023年,星期六五、品質(zhì)相關

1、品質(zhì)相關用于表示R×C(行×列)表的兩個變量之間的關聯(lián)程度??捎糜谛睦頊y驗的編制,進行項目分析2、這種相關因兩個變量(因素)只劃分為不同的品質(zhì)類別,故而得名。一般對計數(shù)數(shù)據(jù),而非測量數(shù)據(jù),即使是測量數(shù)據(jù),也人為地分為幾個類別。3、主要有四分(格)相關、Φ相關、列聯(lián)表相關等。第二十六頁,共三十八頁,編輯于2023年,星期六1、四分相關(1)適用資料四分相關適用于計算兩個變量都是連續(xù)且每個變量都被人為分為兩種類型這樣的測量數(shù)據(jù)之間的相關。計算四分相關首先要將資料整理成四格表。四格表是二個因素(變量),每個變量各有兩項分類。四格表的二因素都是連續(xù)的正態(tài)變量,只是人為將其按一定標準劃分為兩個不同的類別(2)計算公式:P143第二十七頁,共三十八頁,編輯于2023年,星期六2、Φ系數(shù)

(1)適用資料兩個相互關聯(lián)的變量分布都是真正的二分變量,其系數(shù)用符號Φ表示。求取Φ系數(shù)可以運用列聯(lián)表來計算,因此Φ系數(shù)又叫列聯(lián)系數(shù)。適用資料是除四分相關之外的四格表(計數(shù))資料,是表示兩因素兩項分類資料相關程度最常用的一種相關系數(shù)。第二十八頁,共三十八頁,編輯于2023年,星期六(2)計算公式完全正相關全體個案落在四格表中的a、d中;完全負相關全體個案落在四格表中的b、c中;零相關表示均勻分配。當Φ值小于0.3時,表示相關較弱,當Φ值大于0.6時,表示相關較強。除常用Φ系數(shù),也用Q系數(shù)或γ歸結系數(shù)。

第二十九頁,共三十八頁,編輯于2023年,星期六3、列聯(lián)表相關

(1)列聯(lián)相關又稱均方相依系數(shù)、接觸系數(shù)等,一般用C表示。(2)它是二因素的R×C列聯(lián)表資料求得,故稱為列聯(lián)相關。當數(shù)據(jù)屬于R×C表的計數(shù)資料,欲分析所研究的二因素之間的相關程度,就要應用列聯(lián)相關第三十頁,共三十八頁,編輯于2023年,星期六(3)公式:(4)另外當雙變量的測量數(shù)據(jù)整理成次數(shù)分布表后,也可用列聯(lián)相關系數(shù)表示兩變量的相關程度。此時,當分組數(shù)目R≥5,C≥5,而且樣本N又較大,計算的列聯(lián)相關系數(shù)C與積差相關系數(shù)r很接近。第三十一頁,共三十八頁,編輯于2023年,星期六六、相關系數(shù)的選用與解釋如何選擇合適的相關系數(shù)1、選擇計算相關系數(shù)的方法主要取決于要處理的數(shù)據(jù)的性質(zhì)以及某一相關系數(shù)需要滿足的假設條件2、總的來說,為了選擇一個合適的相關系數(shù)進行相關分析,要分下面幾個步驟考慮①

考慮每種測量所產(chǎn)生的數(shù)據(jù)類型②

要對第一種測量數(shù)據(jù)和第二種測量數(shù)據(jù)的類型依次做出判斷③

確定采用哪一種相關系數(shù)。至于兩個測量數(shù)據(jù)哪個為第一,哪個標為第二,沒有差別第三十二頁,共三十八頁,編輯于2023年,星期六相關系數(shù)值的解釋1、相關系數(shù)是一個指標值,它表示兩個變量之間的相關程度2、相關系數(shù)不是等距的測量值,因此在比較相關程度時,不能用倍數(shù)關系說明,只能說絕對值大者比絕對值小者相關更密切一些。3、相關系數(shù)值的大小表明了兩列測量數(shù)據(jù)相互間的相關程度,并可以預測。4、當兩個變量之間的關系受到其他變量的影響時,兩者之間的高強度相關很可能是一種假象:虛假相關或偽相關5、偏相關與半偏相關6、在純理論研究中,即使是很小的相關,如果在統(tǒng)計上有顯著性,也能夠說明心理規(guī)律,但這并不表明有顯著性就就有高相關7、特別注意:證實兩個變量之間存在相關關系,并不一定說明一個變量的變化會引起另外一個變量發(fā)生變化,即“相關關系不是因果關系”。相關值較大的兩類事物之間,不一定存在因果關系第三十三頁,共三十八頁,編輯于2023年,星期六

相關意義的理解1.相關的意義要看確定系數(shù)R22.相關系數(shù)0.3以下,為低相關,有理論意義而無實際意義3.相關系數(shù)0.4-0.6,為中等相關,既有有理論意義,也有實際意義4.相關系數(shù)0.7以上,為高相關,理論意義與實際意義都很大.第三十四頁,共三十八頁,編輯于2023年,星期六相關分析的發(fā)展—聚類分析多組相關指標的簡縮聚類分析(clusteranalysis)又稱分類分析、群聚分析、集群分析,是將所觀測的事物,或觀測事物的指標進行分類的一種統(tǒng)計分析方法。樣品聚類-Q型聚類:根據(jù)樣品(事物或被試)之間的“距離”。,指標聚類-R型聚類:用指標之間的相關系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論