版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022中考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動點(diǎn)(不含端點(diǎn)B,C).若線段AD長為正整數(shù),則點(diǎn)D的個數(shù)共有()A.5個 B.4個 C.3個 D.2個2.對于點(diǎn)A(x1,y1),B(x2,y2),定義一種運(yùn)算:.例如,A(-5,4),B(2,﹣3),.若互不重合的四點(diǎn)C,D,E,F(xiàn),滿足,則C,D,E,F(xiàn)四點(diǎn)【】A.在同一條直線上B.在同一條拋物線上C.在同一反比例函數(shù)圖象上D.是同一個正方形的四個頂點(diǎn)3.小麗只帶2元和5元的兩種面額的鈔票(數(shù)量足夠多),她要買27元的商品,而商店不找零錢,要她剛好付27元,她的付款方式有()種.A.1 B.2 C.3 D.44.-的立方根是()A.-8 B.-4 C.-2 D.不存在5.a(chǎn)、b是實(shí)數(shù),點(diǎn)A(2,a)、B(3,b)在反比例函數(shù)y=﹣的圖象上,則()A.a(chǎn)<b<0 B.b<a<0 C.a(chǎn)<0<b D.b<0<a6.已知圓心在原點(diǎn)O,半徑為5的⊙O,則點(diǎn)P(-3,4)與⊙O的位置關(guān)系是()A.在⊙O內(nèi)B.在⊙O上C.在⊙O外D.不能確定7.如圖,AB是⊙O的弦,半徑OC⊥AB于點(diǎn)D,若⊙O的半徑為5,AB=8,則CD的長是()A.2B.3C.4D.58.下圖是某幾何體的三視圖,則這個幾何體是()A.棱柱 B.圓柱 C.棱錐 D.圓錐9.如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AB=c,∠A=α,則CD長為()A.c?sin2α B.c?cos2α C.c?sinα?tanα D.c?sinα?cosα10.如圖,正六邊形ABCDEF中,P、Q兩點(diǎn)分別為△ACF、△CEF的內(nèi)心.若AF=2,則PQ的長度為何?()A.1 B.2 C.2﹣2 D.4﹣2二、填空題(共7小題,每小題3分,滿分21分)11.化簡;÷(﹣1)=______.12.如圖,反比例函數(shù)y=的圖象上,點(diǎn)A是該圖象第一象限分支上的動點(diǎn),連結(jié)AO并延長交另一支于點(diǎn)B,以AB為斜邊作等腰直角△ABC,頂點(diǎn)C在第四象限,AC與x軸交于點(diǎn)P,連結(jié)BP,在點(diǎn)A運(yùn)動過程中,當(dāng)BP平分∠ABC時,點(diǎn)A的坐標(biāo)為_____.13.拋擲一枚均勻的硬幣,前3次都正面朝上,第4次正面朝上的概率為________.14.如圖,四邊形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,設(shè)Q、R分別是AB、AD上的動點(diǎn),則△CQR的周長的最小值為_________.15.某文化用品商店計劃同時購進(jìn)一批A、B兩種型號的計算器,若購進(jìn)A型計算器10只和B型計算器8只,共需要資金880元;若購進(jìn)A型計算器2只和B型計算器5只,共需要資金380元.則A型號的計算器的每只進(jìn)價為_____元.16.如圖,邊長為4的正方形ABCD內(nèi)接于⊙O,點(diǎn)E是弧AB上的一動點(diǎn)(不與點(diǎn)A、B重合),點(diǎn)F是弧BC上的一點(diǎn),連接OE,OF,分別與交AB,BC于點(diǎn)G,H,且∠EOF=90°,連接GH,有下列結(jié)論:①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點(diǎn)E位置的變化而變化;④△GBH周長的最小值為4+2.其中正確的是_____.(把你認(rèn)為正確結(jié)論的序號都填上)17.若點(diǎn)A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函數(shù)y=(k為常數(shù))的圖象上,則y1、y2、y3的大小關(guān)系為________.三、解答題(共7小題,滿分69分)18.(10分)如圖,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,動點(diǎn)P從點(diǎn)C出發(fā),在BC邊上以每秒cm的速度向點(diǎn)B勻速運(yùn)動,同時動點(diǎn)Q也從點(diǎn)C出發(fā),沿C→A→B以每秒4cm的速度勻速運(yùn)動,運(yùn)動時間為t秒,連接PQ,以PQ為直徑作⊙O.(1)當(dāng)時,求△PCQ的面積;(2)設(shè)⊙O的面積為s,求s與t的函數(shù)關(guān)系式;(3)當(dāng)點(diǎn)Q在AB上運(yùn)動時,⊙O與Rt△ABC的一邊相切,求t的值.19.(5分)如圖1,拋物線y1=ax1﹣x+c與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,),拋物線y1的頂點(diǎn)為G,GM⊥x軸于點(diǎn)M.將拋物線y1平移后得到頂點(diǎn)為B且對稱軸為直線l的拋物線y1.(1)求拋物線y1的解析式;(1)如圖1,在直線l上是否存在點(diǎn)T,使△TAC是等腰三角形?若存在,請求出所有點(diǎn)T的坐標(biāo);若不存在,請說明理由;(3)點(diǎn)P為拋物線y1上一動點(diǎn),過點(diǎn)P作y軸的平行線交拋物線y1于點(diǎn)Q,點(diǎn)Q關(guān)于直線l的對稱點(diǎn)為R,若以P,Q,R為頂點(diǎn)的三角形與△AMG全等,求直線PR的解析式.20.(8分)已知.(1)化簡A;(2)如果a,b是方程的兩個根,求A的值.21.(10分)如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點(diǎn)P,OF∥BC交AC于AC點(diǎn)E,交PC于點(diǎn)F,連接AF(1)判斷AF與⊙O的位置關(guān)系并說明理由;(2)若⊙O的半徑為4,AF=3,求AC的長.22.(10分)已知:如圖,梯形ABCD中,AD∥BC,DE∥AB,與對角線交于點(diǎn),∥,且FG=EF.(1)求證:四邊形是菱形;(2)聯(lián)結(jié)AE,又知AC⊥ED,求證:.23.(12分)一艘貨輪往返于上下游兩個碼頭之間,逆流而上需要6小時,順流而下需要4小時,若船在靜水中的速度為20千米/時,則水流的速度是多少千米/時?24.(14分)已知關(guān)于x,y的二元一次方程組的解為,求a、b的值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】試題分析:過A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是線段BC上的動點(diǎn)(不含端點(diǎn)B,C),∴AE≤AD<AB,即3≤AD<5,∵AD為正整數(shù),∴AD=3或AD=4,當(dāng)AD=4時,E的左右兩邊各有一個點(diǎn)D滿足條件,∴點(diǎn)D的個數(shù)共有3個.故選C.考點(diǎn):等腰三角形的性質(zhì);勾股定理.2、A。【解析】∵對于點(diǎn)A(x1,y1),B(x2,y2),,∴如果設(shè)C(x3,y3),D(x4,y4),E(x5,y5),F(xiàn)(x6,y6),那么,。又∵,∴?!?。令,則C(x3,y3),D(x4,y4),E(x5,y5),F(xiàn)(x6,y6)都在直線上,∴互不重合的四點(diǎn)C,D,E,F(xiàn)在同一條直線上。故選A。3、C【解析】分析:先根據(jù)題意列出二元一次方程,再根據(jù)x,y都是非負(fù)整數(shù)可求得x,y的值.詳解:解:設(shè)2元的共有x張,5元的共有y張,由題意,2x+5y=27∴x=(27-5y)∵x,y是非負(fù)整數(shù),∴或或,∴付款的方式共有3種.故選C.點(diǎn)睛:本題考查二元一次方程的應(yīng)用,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程,再根據(jù)實(shí)際意義求解.4、C【解析】分析:首先求出的值,然后根據(jù)立方根的計算法則得出答案.詳解:∵,,∴的立方根為-2,故選C.點(diǎn)睛:本題主要考查的是算術(shù)平方根與立方根,屬于基礎(chǔ)題型.理解算術(shù)平方根與立方根的含義是解決本題的關(guān)鍵.5、A【解析】解:∵,∴反比例函數(shù)的圖象位于第二、四象限,在每個象限內(nèi),y隨x的增大而增大,∵點(diǎn)A(2,a)、B(3,b)在反比例函數(shù)的圖象上,∴a<b<0,故選A.6、B.【解析】試題解析:∵OP=5,∴根據(jù)點(diǎn)到圓心的距離等于半徑,則知點(diǎn)在圓上.故選B.考點(diǎn):1.點(diǎn)與圓的位置關(guān)系;2.坐標(biāo)與圖形性質(zhì).7、A【解析】試題分析:已知AB是⊙O的弦,半徑OC⊥AB于點(diǎn)D,由垂徑定理可得AD=BD=4,在Rt△ADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故選A.考點(diǎn):垂徑定理;勾股定理.8、D【解析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由俯視圖易得幾何體的底面為圓,還有表示錐頂?shù)膱A心,符合題意的只有圓錐.故選D.【點(diǎn)睛】本題考查由三視圖確定幾何體的形狀,主要考查學(xué)生空間想象能力以及對立體圖形的認(rèn)識.9、D【解析】
根據(jù)銳角三角函數(shù)的定義可得結(jié)論.【詳解】在Rt△ABC中,∠ACB=90°,AB=c,∠A=a,根據(jù)銳角三角函數(shù)的定義可得sinα=,∴BC=c?sinα,∵∠A+∠B=90°,∠DCB+∠B=90°,∴∠DCB=∠A=α在Rt△DCB中,∠CDB=90°,∴cos∠DCB=,∴CD=BC?cosα=c?sinα?cosα,故選D.10、C【解析】
先判斷出PQ⊥CF,再求出AC=2,AF=2,CF=2AF=4,利用△ACF的面積的兩種算法即可求出PG,然后計算出PQ即可.【詳解】解:如圖,連接PF,QF,PC,QC∵P、Q兩點(diǎn)分別為△ACF、△CEF的內(nèi)心,∴PF是∠AFC的角平分線,F(xiàn)Q是∠CFE的角平分線,∴∠PFC=∠AFC=30°,∠QFC=∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等邊三角形,∴PQ=2PG;易得△ACF≌△ECF,且內(nèi)角是30o,60o,90o的三角形,∴AC=2,AF=2,CF=2AF=4,∴S△ACF=AF×AC=×2×2=2,過點(diǎn)P作PM⊥AF,PN⊥AC,PQ交CF于G,∵點(diǎn)P是△ACF的內(nèi)心,∴PM=PN=PG,∴S△ACF=S△PAF+S△PAC+S△PCF=AF×PM+AC×PN+CF×PG=×2×PG+×2×PG+×4×PG=(1++2)PG=(3+)PG=2,∴PG==,∴PQ=2PG=2()=2-2.故選C.【點(diǎn)睛】本題是三角形的內(nèi)切圓與內(nèi)心,主要考查了三角形的內(nèi)心的特點(diǎn),三角形的全等,解本題的關(guān)鍵是知道三角形的內(nèi)心的意義.二、填空題(共7小題,每小題3分,滿分21分)11、-【解析】
直接利用分式的混合運(yùn)算法則即可得出.【詳解】原式,,,.故答案為.【點(diǎn)睛】此題主要考查了分式的化簡,正確掌握運(yùn)算法則是解題關(guān)鍵.12、(,)【解析】分析:連接OC,過點(diǎn)A作AE⊥x軸于E,過點(diǎn)C作CF⊥x軸于F,則有△AOE≌△OCF,進(jìn)而可得出AE=OF、OE=CF,根據(jù)角平分線的性質(zhì)可得出,設(shè)點(diǎn)A的坐標(biāo)為(a,)(a>0),由可求出a值,進(jìn)而得到點(diǎn)A的坐標(biāo).詳解:連接OC,過點(diǎn)A作AE⊥x軸于E,過點(diǎn)C作CF⊥x軸于F,如圖所示.∵△ABC為等腰直角三角形,∴OA=OC,OC⊥AB,∴∠AOE+∠COF=90°.∵∠COF+∠OCF=90°,∴∠AOE=∠OCF.在△AOE和△OCF中,,∴△AOE≌△OCF(AAS),∴AE=OF,OE=CF.∵BP平分∠ABC,∴,∴.設(shè)點(diǎn)A的坐標(biāo)為(a,),∴,解得:a=或a=-(舍去),∴=,∴點(diǎn)A的坐標(biāo)為(,),故答案為:((,)).點(diǎn)睛:本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、全等三角形的判定與性質(zhì)、角平分線的性質(zhì)以及等腰直角三角形性質(zhì)的綜合運(yùn)用,構(gòu)造全等三角形,利用全等三角形的對應(yīng)邊相等是解題的關(guān)鍵.13、【解析】
根據(jù)概率的計算方法求解即可.【詳解】∵第4次拋擲一枚均勻的硬幣時,正面和反面朝上的概率相等,∴第4次正面朝上的概率為.故答案為:.【點(diǎn)睛】此題考查了概率公式的計算方法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.14、【解析】
作C關(guān)于AB的對稱點(diǎn)G,關(guān)于AD的對稱點(diǎn)F,可得三角形CQR的周長=CQ+QR+CR=GQ+QR+RF≥GF.根據(jù)圓周角定理可得∠CDB=∠CAB=45°,∠CBD=∠CAD=30°,由于GF=2BD,在三角形CBD中,作CH⊥BD于H,可求BD的長,從而求出△CQR的周長的最小值.【詳解】解:作C關(guān)于AB的對稱點(diǎn)G,關(guān)于AD的對稱點(diǎn)F,則三角形CQR的周長=CQ+QR+CR=GQ+QR+RF=GF,在Rt△ADC中,∵sin∠DAC=,∴∠DAC=30°,∵BA=BC,∠ABC=90°,∴∠BAC=∠BCA=45°,∵∠ADC=∠ABC=90°,∴A,B,C,D四點(diǎn)共圓,∴∠CDB=∠CAB=45°,∠CBD=∠CAD=30°在三角形CBD中,作CH⊥BD于H,BD=DH+BH=4×cos45°+×cos30°=,∵CD=DF,CB=BG,∴GF=2BD=,△CQR的周長的最小值為.【點(diǎn)睛】本題考查了軸對稱問題,關(guān)鍵是根據(jù)軸對稱的性質(zhì)和兩點(diǎn)之間線段最短解答.15、40【解析】
設(shè)A型號的計算器的每只進(jìn)價為x元,B型號的計算器的每只進(jìn)價為y元,根據(jù)“若購進(jìn)A型計算器10只和B型計算器8只,共需要資金880元;若購進(jìn)A型計算器2只和B型計算器5只,共需要資金380元”,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論.【詳解】設(shè)A型號的計算器的每只進(jìn)價為x元,B型號的計算器的每只進(jìn)價為y元,根據(jù)題意得:,解得:.答:A型號的計算器的每只進(jìn)價為40元.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.16、①②④【解析】
①根據(jù)ASA可證△BOE≌△COF,根據(jù)全等三角形的性質(zhì)得到BE=CF,根據(jù)等弦對等弧得到,可以判斷①;
②根據(jù)SAS可證△BOG≌△COH,根據(jù)全等三角形的性質(zhì)得到∠GOH=90°,OG=OH,根據(jù)等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;
③通過證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;
④根據(jù)△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設(shè)BG=x,則BH=4-x,根據(jù)勾股定理得到GH==,可以求得其最小值,可以判斷④.【詳解】解:①如圖所示,
∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,
∴∠BOE=∠COF,
在△BOE與△COF中,,
∴△BOE≌△COF,
∴BE=CF,
∴,①正確;
②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,
∴△BOG≌△COH;
∴OG=OH,∵∠GOH=90°,
∴△OGH是等腰直角三角形,②正確.③如圖所示,
∵△HOM≌△GON,
∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯誤;
④∵△BOG≌△COH,
∴BG=CH,
∴BG+BH=BC=4,
設(shè)BG=x,則BH=4-x,
則GH==,
∴其最小值為4+2,④正確.
故答案為:①②④【點(diǎn)睛】考查了圓的綜合題,關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),等弦對等弧,等腰直角三角形的判定,勾股定理,面積的計算,綜合性較強(qiáng).17、y2<y1<y2【解析】分析:設(shè)t=k2﹣2k+2,配方后可得出t>1,利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出y1、y2、y2的值,比較后即可得出結(jié)論.詳解:設(shè)t=k2﹣2k+2,∵k2﹣2k+2=(k﹣1)2+2>1,∴t>1.∵點(diǎn)A(﹣2,y1)、B(﹣1,y2)、C(1,y2)都在反比例函數(shù)y=(k為常數(shù))的圖象上,∴y1=﹣,y2=﹣t,y2=t,又∵﹣t<﹣<t,∴y2<y1<y2.故答案為:y2<y1<y2.點(diǎn)睛:本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出y1、y2、y2的值是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1);(2)①;②;(3)t的值為或1或.【解析】
(1)先根據(jù)t的值計算CQ和CP的長,由圖形可知△PCQ是直角三角形,根據(jù)三角形面積公式可得結(jié)論;(2)分兩種情況:①當(dāng)Q在邊AC上運(yùn)動時,②當(dāng)Q在邊AB上運(yùn)動時;分別根據(jù)勾股定理計算PQ2,最后利用圓的面積公式可得S與t的關(guān)系式;(3)分別當(dāng)⊙O與BC相切時、當(dāng)⊙O與AB相切時,當(dāng)⊙O與AC相切時三種情況分類討論即可確定答案.【詳解】(1)當(dāng)t=時,CQ=4t=4×=2,即此時Q與A重合,CP=t=,∵∠ACB=90°,∴S△PCQ=CQ?PC=×2×=;(2)分兩種情況:①當(dāng)Q在邊AC上運(yùn)動時,0<t≤2,如圖1,由題意得:CQ=4t,CP=t,由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,∴S=π=;②當(dāng)Q在邊AB上運(yùn)動時,2<t<4如圖2,設(shè)⊙O與AB的另一個交點(diǎn)為D,連接PD,∵CP=t,AC+AQ=4t,∴PB=BC﹣PC=2﹣t,BQ=2+4﹣4t=6﹣4t,∵PQ為⊙O的直徑,∴∠PDQ=90°,Rt△ACB中,AC=2cm,AB=4cm,∴∠B=30°,Rt△PDB中,PD=PB=,∴BD=,∴QD=BQ﹣BD=6﹣4t﹣=3﹣,∴PQ==,∴S=π==;(3)分三種情況:①當(dāng)⊙O與AC相切時,如圖3,設(shè)切點(diǎn)為E,連接OE,過Q作QF⊥AC于F,∴OE⊥AC,∵AQ=4t﹣2,Rt△AFQ中,∠AQF=30°,∴AF=2t﹣1,∴FQ=(2t﹣1),∵FQ∥OE∥PC,OQ=OP,∴EF=CE,∴FQ+PC=2OE=PQ,∴(2t﹣1)+t=,解得:t=或﹣(舍);②當(dāng)⊙O與BC相切時,如圖4,此時PQ⊥BC,∵BQ=6﹣4t,PB=2﹣t,∴cos30°=,∴,∴t=1;③當(dāng)⊙O與BA相切時,如圖5,此時PQ⊥BA,∵BQ=6﹣4t,PB=2﹣t,∴cos30°=,∴,∴t=,綜上所述,t的值為或1或.【點(diǎn)睛】本題是圓的綜合題,涉及了三角函數(shù)、勾股定理、圓的面積、切線的性質(zhì)等知識,綜合性較強(qiáng),有一定的難度,以點(diǎn)P和Q運(yùn)動為主線,畫出對應(yīng)的圖形是關(guān)鍵,注意數(shù)形結(jié)合的思想.19、(1)y1=-x1+x-;(1)存在,T(1,),(1,),(1,﹣);(3)y=﹣x+或y=﹣.【解析】
(1)應(yīng)用待定系數(shù)法求解析式;(1)設(shè)出點(diǎn)T坐標(biāo),表示△TAC三邊,進(jìn)行分類討論;(3)設(shè)出點(diǎn)P坐標(biāo),表示Q、R坐標(biāo)及PQ、QR,根據(jù)以P,Q,R為頂點(diǎn)的三角形與△AMG全等,分類討論對應(yīng)邊相等的可能性即可.【詳解】解:(1)由已知,c=,將B(1,0)代入,得:a﹣=0,解得a=﹣,拋物線解析式為y1=x1-x+,∵拋物線y1平移后得到y(tǒng)1,且頂點(diǎn)為B(1,0),∴y1=﹣(x﹣1)1,即y1=-x1+x-;(1)存在,如圖1:拋物線y1的對稱軸l為x=1,設(shè)T(1,t),已知A(﹣3,0),C(0,),過點(diǎn)T作TE⊥y軸于E,則TC1=TE1+CE1=11+()1=t1﹣t+,TA1=TB1+AB1=(1+3)1+t1=t1+16,AC1=,當(dāng)TC=AC時,t1﹣t+=,解得:t1=,t1=;當(dāng)TA=AC時,t1+16=,無解;當(dāng)TA=TC時,t1﹣t+=t1+16,解得t3=﹣;當(dāng)點(diǎn)T坐標(biāo)分別為(1,),(1,),(1,﹣)時,△TAC為等腰三角形;(3)如圖1:設(shè)P(m,),則Q(m,),∵Q、R關(guān)于x=1對稱∴R(1﹣m,),①當(dāng)點(diǎn)P在直線l左側(cè)時,PQ=1﹣m,QR=1﹣1m,∵△PQR與△AMG全等,∴當(dāng)PQ=GM且QR=AM時,m=0,∴P(0,),即點(diǎn)P、C重合,∴R(1,﹣),由此求直線PR解析式為y=﹣x+,當(dāng)PQ=AM且QR=GM時,無解;②當(dāng)點(diǎn)P在直線l右側(cè)時,同理:PQ=m﹣1,QR=1m﹣1,則P(1,﹣),R(0,﹣),PQ解析式為:y=﹣;∴PR解析式為:y=﹣x+或y=﹣.【點(diǎn)睛】本題是代數(shù)幾何綜合題,考查了二次函數(shù)性質(zhì)、三角形全等和等腰三角形判定,熟練掌握相關(guān)知識,應(yīng)用數(shù)形結(jié)合和分類討論的數(shù)學(xué)思想進(jìn)行解題是關(guān)鍵.20、(1);(2)-.【解析】
(1)先通分,再根據(jù)同分母的分式相加減求出即可;(2)根據(jù)根與系數(shù)的關(guān)系即可得出結(jié)論.【詳解】(1)A=﹣==;(2)∵a,b是方程的兩個根,∴a+b=4,ab=-12,∴.【點(diǎn)睛】本題考查了分式的加減和根與系數(shù)的關(guān)系,能正確根據(jù)分式的運(yùn)算法則進(jìn)行化簡是解答此題的關(guān)鍵.21、解:(1)AF與圓O的相切.理由為:如圖,連接OC,∵PC為圓O切線,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF為圓O的切線,即AF與⊙O的位置關(guān)系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E為AC中點(diǎn),即AE=CE=AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根據(jù)勾股定理得:OF=1.∵S△AOF=?OA?AF=?OF?AE,∴AE=.∴AC=2AE=.【解析】試題分析:(1)連接OC,先證出∠3=∠2,由SAS證明△OAF≌△OCF,得對應(yīng)角相等∠OAF=∠OCF,再根據(jù)切線的性質(zhì)得出∠OCF=90°,證出∠OAF=90°,即可得出結(jié)論;(2)先由勾股定理求出OF,再由三角形的面積求出AE,根據(jù)垂徑定理得出AC=2AE.試題解析:(1)連接OC,如圖所示:∵AB是⊙O直徑,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△O
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 護(hù)理工作中的人文關(guān)懷
- 2024辦公設(shè)備維修保養(yǎng)協(xié)議書
- 幼兒園消防安全演習(xí)記錄制度
- 幼兒教師職業(yè)培訓(xùn)
- 公司及項目部安全培訓(xùn)試題及答案【典優(yōu)】
- 舊樓電梯井改造施工方案
- 廠級安全培訓(xùn)試題答案打印
- 2022幼兒園教師評優(yōu)方案
- 新入職員工安全培訓(xùn)試題完整參考答案
- 新員工入職前安全培訓(xùn)試題及完整答案(奪冠系列)
- 急性肺栓塞的個案護(hù)理
- 20s206自動噴水與水噴霧滅火設(shè)施安裝
- 《行政復(fù)議法》培訓(xùn)課件資料
- 高三英語how-we-learn-浙教版
- 陰道助產(chǎn)并發(fā)癥的處理
- 幼兒園公開課:中班語言《跑跑鎮(zhèn)》課件
- 山東省臨沂市羅莊區(qū)2023-2024學(xué)年七年級上學(xué)期期中數(shù)學(xué)試題
- 機(jī)器人帶來的挑戰(zhàn)和機(jī)遇
- 2年級下冊小學(xué)語文校本教材(二)
- 文言文實(shí)虛詞復(fù)習(xí)語文八年級上冊
- 結(jié)合實(shí)際-談?wù)勗鯓幼鲆幻嗣駶M意的公務(wù)員
評論
0/150
提交評論