高中三角函數(shù)知識(shí)點(diǎn)歸納總結(jié)大全_第1頁(yè)
高中三角函數(shù)知識(shí)點(diǎn)歸納總結(jié)大全_第2頁(yè)
高中三角函數(shù)知識(shí)點(diǎn)歸納總結(jié)大全_第3頁(yè)
高中三角函數(shù)知識(shí)點(diǎn)歸納總結(jié)大全_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高中三角函數(shù)知識(shí)點(diǎn)歸納總結(jié)大全高中三角函數(shù)知識(shí)點(diǎn)歸納一、見(jiàn)“給角求值”問(wèn)題,運(yùn)用“新興”誘導(dǎo)公式一步到位轉(zhuǎn)換到區(qū)間(-90o,90o)的公式.1.sin(kπ+α)=(-1)ksinα(k∈Z);2.cos(kπ+α)=(-1)kcosα(k∈Z);3.tan(kπ+α)=(-1)ktanα(k∈Z);4.cot(kπ+α)=(-1)kcotα(k∈Z).二、見(jiàn)“sinα±cosα”問(wèn)題,運(yùn)用三角“八卦圖”1.sinα+cosα>0(或<0)óα的終邊在直線y+x=0的上方(或下方);sinα-cosα>0(或<0)óα的終邊在直線y-x=0的上方(或下方);3.|sinα|>|cosα|óα的終邊在Ⅱ、Ⅲ的區(qū)域內(nèi);4.|sinα|<|cosα|óα的終邊在Ⅰ、Ⅳ區(qū)域內(nèi).三、見(jiàn)“知1求5”問(wèn)題,造Rt△,用勾股定理,熟記常用勾股數(shù)(3,4,5),(5,12,13),(7,24,25),仍然注意“符號(hào)看象限”。四、見(jiàn)“切割”問(wèn)題,轉(zhuǎn)換成“弦”的問(wèn)題。五、“見(jiàn)齊思弦”=>“化弦為一”:已知tanα,求sinα與cosα的齊次式,有些整式情形還可以視其分母為1,轉(zhuǎn)化為sin2α+cos2α.六、見(jiàn)“正弦值或角的平方差”形式,啟用“平方差”公式:1.sin(α+β)sin(α-β)=sin2α-sin2β;2.cos(α+β)cos(α-β)=cos2α-sin2β.七、見(jiàn)“sinα±cosα與sinαcosα”問(wèn)題,起用平則:(sinα±cosα)2=1±2sinαcosα=1±sin2α,故1.若sinα+cosα=t,(且t2≤2),則2sinαcosα=t2-1=sin2α;2.若sinα-cosα=t,(且t2≤2),則2sinαcosα=1-t2=sin2α.八、見(jiàn)“tanα+tanβ與tanαtanβ”問(wèn)題,啟用變形公式:tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=九、見(jiàn)三角函數(shù)“對(duì)稱”問(wèn)題,啟用圖象特征代數(shù)關(guān)系:(A≠0)1.函數(shù)y=Asin(wx+φ)和函數(shù)y=Acos(wx+φ)的圖象,關(guān)于過(guò)最值點(diǎn)且平行于y軸的直線分別成軸對(duì)稱;2.函數(shù)y=Asin(wx+φ)和函數(shù)y=Acos(wx+φ)的圖象,關(guān)于其中間零點(diǎn)分別成中心對(duì)稱;同樣,利用圖象也可以得到函數(shù)y=Atan(wx+φ)和函數(shù)y=Acot(wx+φ)的對(duì)稱性質(zhì)。十、見(jiàn)“求最值、值域”問(wèn)題,啟用有界性,或者輔助角公式:1.|sinx|≤1,|cosx|≤1;2.(asinx+bcosx)2=(a2+b2)sin2(x+φ)≤(a2+b2);3.asinx+bcosx=c有解的充要條件是a2+b2≥c2.十一、見(jiàn)“高次”,用降冪,見(jiàn)“復(fù)角”,用轉(zhuǎn)化.1.cos2x=1-2sin2x=2cos2x-1.2.2x=(x+y)+(x-y);2y=(x+y)-(x-y);x-w=(x+y)-(y+w)等。學(xué)好高中數(shù)學(xué)的方法1.做高中數(shù)學(xué)題的時(shí)候千萬(wàn)不能怕難題!有很多人數(shù)學(xué)分?jǐn)?shù)提不動(dòng),很大一部分原因是他們的畏懼心理。有的人看到圓錐曲線和導(dǎo)數(shù),看到稍微長(zhǎng)一點(diǎn)的復(fù)雜一點(diǎn)的敘述,甚至看到21、22就已經(jīng)開(kāi)始退卻了。這部分的分?jǐn)?shù),如果你不去努力,永遠(yuǎn)都不會(huì)掙到的,所以第一個(gè)建議,就是大膽的去做。前面虧欠數(shù)學(xué)這門學(xué)科太多,就算讓它打腫了又怎樣,后面一點(diǎn)一點(diǎn)的強(qiáng)大起來(lái),總有那么一天你去打它的臉。2.錯(cuò)題本怎么用。和記筆記一樣,整理錯(cuò)題不是謄寫不是照抄,而是摘抄。你只顧著去采擷問(wèn)題,就失去了理解和挑選題目的過(guò)程,筆記同理,如果老師說(shuō)什么記什么,那只能說(shuō)明你這節(jié)課根本沒(méi)聽(tīng),真正有效率的人,是會(huì)把知識(shí)簡(jiǎn)化,把書(shū)本讀薄的。先學(xué)學(xué)你能思考到答案的哪一步,學(xué)著去偷分。當(dāng)然,因人而異,如果你覺(jué)得還有哪些題需要整理也可以記下來(lái)。3.高中數(shù)學(xué)試卷怎么做?我的習(xí)慣是模擬題做專題練習(xí),即我復(fù)習(xí)三角函數(shù),我就一天做五套卷子的函數(shù),練選擇題,我就刷選擇題。高考卷子則是完全模擬,而且優(yōu)先挑自己省的以及和自己省相似的卷子模擬,時(shí)間的跨度以三年內(nèi)的為準(zhǔn),因?yàn)槲耶?dāng)年是課改的第二年,所以第一年的卷子我做的特別細(xì)致。高中數(shù)學(xué)常用解題方法一、熟悉化方法所謂熟悉化方法,就是當(dāng)我們面臨的是一道以前沒(méi)有接觸過(guò)的陌生題目時(shí),要設(shè)法把它化為曾經(jīng)解過(guò)的或比較熟悉的題目,以便充分利用已有的知識(shí)、或解題模式,順利地解出原題。一般說(shuō)來(lái),對(duì)于題目的熟悉程度,取決于對(duì)題目自身結(jié)構(gòu)的認(rèn)識(shí)和理解。從結(jié)構(gòu)上來(lái)分析,任何一道解答題,都包含條件和結(jié)論或問(wèn)題兩個(gè)方面。因此,要把陌生題轉(zhuǎn)化為熟悉題,可以在變換題目的條件、結(jié)論或問(wèn)題以及它們的聯(lián)系方式上多下功夫。常用的途徑有:一、充分聯(lián)想回憶基本知識(shí)和題型:按照波利亞的觀點(diǎn),在解決問(wèn)題之前,我們應(yīng)充分聯(lián)想和回憶與原有問(wèn)題相同或相似的知識(shí)點(diǎn)和題型,充分利用相似問(wèn)題中的方式、方法和結(jié)論,從而解決現(xiàn)有的問(wèn)題。二、全方位、多角度分析題意:對(duì)于同一道數(shù)學(xué)題,常常可以不同的側(cè)面、不同的角度去認(rèn)識(shí)。因此,根據(jù)自己的知識(shí)和經(jīng)驗(yàn),適時(shí)調(diào)整分析問(wèn)題的視角,有助于更好地把握題意,找到自己熟悉的解題方向。三恰當(dāng)構(gòu)造輔助元素:數(shù)學(xué)中,同一素材的題目,常??梢杂胁煌谋憩F(xiàn)形式;條件與結(jié)論或問(wèn)題之間,也存在著多種聯(lián)系方式。因此,恰當(dāng)構(gòu)造輔助元素,有助于改變題目的形式,溝通條件與結(jié)論或條件與問(wèn)題的內(nèi)在聯(lián)系,把陌生題轉(zhuǎn)化為熟悉題。數(shù)學(xué)解題中,構(gòu)造的輔助元素是多種多樣的,常見(jiàn)的有構(gòu)造圖形點(diǎn)、線、面、體,構(gòu)造算法,構(gòu)造多項(xiàng)式,構(gòu)造方程組,構(gòu)造坐標(biāo)系,構(gòu)造數(shù)列,構(gòu)造行列式,構(gòu)造等價(jià)性命題,構(gòu)造反例,構(gòu)造數(shù)學(xué)模型等等。二、簡(jiǎn)單化方法所謂簡(jiǎn)單化方法,就是當(dāng)我們面臨的是一道結(jié)構(gòu)復(fù)雜、難以入手的題目時(shí),要設(shè)法把轉(zhuǎn)化為一道或幾道比較簡(jiǎn)單、易于解答的新題,以便通過(guò)對(duì)新題的考察,啟迪解題思路,以簡(jiǎn)馭繁,解出原題。簡(jiǎn)單化是熟悉

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論