版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
OutlineForasingleparticle,thewavefunction
(r,t)isafunctionofthespatialcoordinatesrandthetimet(we’llignorespinforthemoment).Thewavefunctionforatwo
particlesystemisafunctionofthecoordinatesofparticleone(r1),thecoordinatesofparticletwo(r2),andthetime:Itstimeevolutionisdetermined(asalways)bytheSchr?dingerequation:whereHistheHamiltonianforthewholesystem:thesubscriptonindicatesdifferentiationwithrespecttothecoordinatesofparticle1orparticle2,asthecasemaybe.
Thestatisticalinterpretationcarriesoverintheobviousway:istheprobabilityoffindingparticle1inthevolumed3r1andparticle2inthevolumed3r2.Evidentlymustbenormalizedinsuchawaythat
Fortime-independent
potentials,weobtainacompletesetofsolutionsbyseparationofvariables:wherethespatialwavefunction
(r1,r2)satisfiesthetime-independentSchr?dingerequation:andEisthetotalenergyofthesystem.
Supposeparticle1isinthe(one-particle)statea(r),andparticle2isinthestateb(r).Inthatcase,
(r1,r2)isasimpleproduct:
Ofcourse,thisassumesthatwecantelltheparticlesapart.
Otherwise,itwouldnotmakeanysensetoclaimthatnumber1isstatea(r)andnumber2isinstateb(r).Ifweweretalkingaboutclassicalmechanicsthiswouldbeasillyobjection.
Youcanalwaystelltheparticlesapart,inprinciple,justpaintoneofthemredandtheotheroneblue,orstampidentificationnumbersonthem,orhireprivatedetectivestofollowthemaround.
Allwecouldsayisthatoneofthemisinthestatea(r)andtheotherisinstateb(r),butwewouldn’tknowwhichiswhich.Butinquantummechanicsthesituationisfundamentallydifferent:
Youcan’tpaintanelectronred,orpinalabelonit,andadetective’sobservationswillinevitablyandunpredictablyalterthestate,raisingdoubtsastowhetherthetwohadperhapsswitchedplaces.
Thefactis,allelectronsareutterly(全然;完全地)identical,inawaythatnotwoclassicalobjectscaneverbe.
Itisnotmerelythatwedon’thappentoknowwhichelectroniswhich;Goddoesn’tknowwhichiswhich,becausethereisnosuchthingas“this”electron,or“that”electron;allwecanlegitimatelyspeakaboutis“an”electron.Quantummechanicsneatlyaccommodatestheexistenceofparticlesthatare
indistinguishableinprinciple:
Wesimplyconstructawavefunctionthatisnoncommittalastowhichparticleisinwhichstate.Thereareactuallytwowaystodoit:Thusthetheoryadmitstwokindsofidenticalparticles:
bosons,forwhichweusetheplussign,and
fermions,forwhichweusetheminussign.TheindistinguishableisonefundamentalprincipleofQuantumMechanics!ItsohappensthatThisconnectionbetweenspinand“statistics”canbeprovedinrelativisticquantummechanics;inthenonrelativistictheoryitmustbetakenasanaxiom.Itfollows,inparticular,thattwoidentical
fermions(forexample,twoelectrons)cannotoccupythesamestate.
Forifa(r)=b(r),then
andweareleftwithnowavefunctionatall.ThisisthefamousPauliexclusionprinciple.
Itisnotabizarre(怪誕的)adhoc(特別的)
assumptionapplyingonlytoelectrons,butratheraconsequenceoftherulesforconstructingtwo-particlewavefunctions,applyingtoall
identicalfermions.
Thereisamoregeneralwaytoformulatetheproblem.
Letusdefinetheexchangeoperator
Pwhichinterchangesthetwoparticles:Clearly,P2=1,anditfollowsthattheeigenvaluesofPare1.
Ifthetwoparticlesareidentical,theHamiltonianmusttreatthemthesame:ItfollowsthatPandHarecompatibleobservables,andhencewecanfindacompletesetoffunctionsthataresimultaneousofboth.Thatistosay,wecanfindsolutionstotheSchr?dingerequationthatareeithersymmetric(eigenvalue+1)orantisymmetric(eigenvalue
1)underexchange:Moreover,ifasystemstartsoutinsuchastate,itwillremaininsuchastate!Thenewlaw(symmetrizationrequirement)isthat:foridenticalparticlesthewavefunctionisnotmerelyallowed,
butrequired
tosatisfy
Eq.[5.14]
,withthe
plus
signforbosonsandthe
minus
signforfermions.
Thisisthegeneralstatement.
Eq.[5.10]isaspecialcase.Example.
Supposewehavetwonon-interactingparticles,bothofmassm,intheinfinitesquarewell(Section2.2).Theone-particlestatesare
Iftheparticlesaredistinguishable,thecompositewavefunctionsaresimpleproducts:Forexample,thegroundstateisthefirstexcitedstateisdoublydegenerate:Ifthetwoparticlesareidenticalbosons,thegroundstateisunchanged,butthefirstexcitedstateisnon-degenerate:stillwithenergy5K.
Iftheparticlesareidenticalfermions,thereisnostatewithenergy2K;thegroundstateisanditsenergyis5K.Whatthesymmetrizationrequirementactuallydoes?
Supposeoneparticleisinstatea(x),andtheotherisinstateb(x),andthesetwostatesareorthogonalandnormalized.
Ifthetwoparticlesaredistinguishable,number1istheoneinstatea(x),andnumber2istheoneinstateb(x),
thenthecombinedwavefunctionis
We’regoingtoworkoutasimpleone-dimensionalexample.
Iftheyareidenticalbosons,thecompositewavefunctionisandiftheyareidenticalfermions,itis
Let’scalculatetheexpectationvalueofthesquareoftheseparationdistance
betweenthetwoparticles,Case1:Distinguishableparticles.
ForthewavefunctioninEq.[5.15].wehavetheexpectationvalueofx2intheone-particlestatea(x),
andInthiscase,then,Theanswerwould,ofcourse,bethesameifparticle1hadbeeninstateb(x),andparticle2instatea(x).Case2:Identicalparticles.
ForthewavefunctionsinEqs.[5.16]and[5.17],
Similarly,ButwhereEvidentlyidenticalbosons(theuppersigns)tendtobesomewhatclosertogether,andidenticalfermions(thelowersigns)somewhatfartherapart,thandistinguishableparticlesinthesametwostates.
ComparingEqs.[5.19]and[5.21],weseethatthedifferenceresidesinthefinalterm:Noticethatxab
vanishesunlessthetwowavefunctionsactuallyoverlap(部分重疊)
Soifa(x)representsanelectroninanatominChicagoandb(x)representsanelectroninanatominSeattle,it’snotgoingtomakeanydifferencewhetheryouantisymmetrizethewavefunctionornot.Asapracticalmatter,therefore,it’sokaytopretendthatelectronswithnonoverlappingwavefunctionsaredistinguishable.
Theinterestingcaseiswhenthereissomeoverlapofthewavefunctions.Thesystembehavesasthoughtherewerea“forceofattraction(吸引力)”betweenidenticalbosons,pullingthemclosertogether,anda“forceofrepulsion(排斥力)”betweenidenticalfermions,pushingthemapart.Wecallitanexchangeforce,althoughit’snotreallyaforceatall—nophysicalagencyispushingontheparticles;rather,itisapurelygeometrical
(幾何學(xué)的)consequenceofthesymmetrizationrequirement.Itisalsoastrictlyquantummechanicalphenomenon,withno
classicalcounterpart.Butwait.Wehavebeenignoringspin.
Thecompletestateoftheelectronincludesnotonlyitspositionwavefunction,butalsoaspinor,describingtheorientationofitsspin:Whenweputtogetherthetwo-electronstate,itisthewholeworks,notjustthespatialpart,thathastobeantisymmetricwithrespecttoexchange.Now,aglancebackatthecompositespinstates(Eqs.[4.177]and[4.178])revealsthat:
thesingletcombinationisantisymmetric(andhencewouldhavetobejoinedwithasymmetric
spatialfunction),whereasthethreetripletstatesareallsymmetric(andwouldrequireanantisymmetric
spatialfunction).
Evidently,then,thesingletstateshouldleadtobonding(鍵合),andthetriplettoantibonding.Sureenough,thechemiststellusthatcovalent(共價(jià)的)bondingrequiresthetwoelectronstooccupythesingletstate,withtotalspinzero.Homework:
Problem5.4,Problem5.7.
Aneutral(中性的)atom,ofatomicnumber
Z,consistsofaheavynucleus,withelectricchargeZe,surroundedbyZ
electrons(massmandchargee).TheHamiltonianforthissystemis
Thetermincurlybracketsrepresentsthekineticpluspotentialenergyofthejthelectronintheelectricfieldofthenucleus;
Thesecondsum(withrunsoverallvaluesofjandkexceptj=k)isthepotentialenergyassociatedwiththemutualrepulsion(排斥)oftheelectronsTheproblemistosolveSchr?dingerequation.forthewavefunction
(r1,r2,,rZ).
Becauseelectronsareidenticalfermions,however,notallsolutionsareacceptable:onlythoseforwhichthecompletestate(positionandspin),
isantisymmetricwithrespecttointerchangeofanytwoelectrons.Inparticular,notwoelectronscanoccupythesamestate.
Unfortunately,theSchr?dingerequationwiththeHamiltonianinEq.[5.24]cannotbesolvedexactly(atanyrate,ithasn’tbeen)exceptfortheverysimplestcaseZ=1(hydrogen).Followingisonlytosketchsomeofthequalitativefeaturesofthesolutions,obtainedbyneglectingtheelectronrepulsiontermaltogether.
Afterhydrogen,thesimplestatomishelium(Z=2).TheHamiltonian,consistsoftwohydrogenic
Hamiltonians(withnuclearcharge2e),oneforelectron1andoneforelectron2,togetherwithafinaltermdescribingtherepulsionofthetwoelectrons.Itisthislasttermthatcausesalltheproblems.
Ifwesimplyignoreit,theSchr?dingerequationseparates,andthesolutionscanbewrittenasproductsofhydrogenwavefunctions:onlywithhalftheBohrradius,andfourtimestheBohrenergies(seeProblem4.16).
ThetotalenergywouldbewhereEn=13.6/n2
eV.
Inparticular,thegroundstateoftheHeliumwouldbeanditsenergywouldbeBecause0isasymmetricfunction,thespinstatehastobeantisymmetric,sothegroundstateofHeliumisasingletconfiguration,withthespins“oppositelyaligned(排列)”.
Theactual
groundstateofheliumisindeedasinglet,buttheexperimentallydeterminedenergyis78.975eV,sotheagreementisnotverygood.
Butthisishardlysurprising:Weignoredelectronrepulsion,whichiscertainlynotasmallcontribution.Itisclearlypositive,
whichiscomforting---evidentlyitbringsthetotalenergyupfrom(108.8)to(78.975)eV.Inthesolidstate,afewofthelooselyboundoutermostvalence(化合價(jià))electronsineachatombecomedetachedandroamaroundthroughoutthematerial,nolongersubjectonlytotheCoulombfieldofaspecific“parent”nucleus,butrathertothecombinedpotentialoftheentirecrystallattice.
Inthissectionwewillexaminetwoextremelyprimitivemodels:
(i)theelectrongastheoryofSommerfeld,whichignores
all
forces(excepttheconfiningboundaries),treatingthewanderingelectronsasfreeparticlesinabox(thethree-dimensionalanalogtoaninfinitesquarewell);and(ii)theBloch’stheory,whichintroducesaperiodicpotentialrepresentingtheelectricalattractionoftheregularlyspaced,positivelycharged,nuclei(butstillignoreselectron-electronrepulsion).Supposetheobjectinquestionisarectangularsolid,withdimensionslx,ly,lz,andimaginethatanelectroninsideexperiencesnoforcesatall,exceptattheimpenetrablewalls:TheSchr?dingerequation:separatesinCartesiancoordinates:(x,y,z)=X(x)Y(y)Z(z),withandE=Ex+Ey+Ez
.Lettingweobtainthegeneralsolutions
TheboundaryconditionsrequirethatX(0)=Y(0)=Z(0)=0,soBx=By=Bz=0,andX(lx)=Y(ly)=Z(lz)=0,sowhereeachnisapositiveinteger:The(normalized)wavefunctionsare
andtheallowedenergiesarewherekisthemagnitudeofthewavevector
k=(kx,ky,kz).
Ifyouimagineathree-dimensionalspace,withaxes
kx,ky,kz,andplanesdrawninatkx=(/lx),(2/lx),(3/lx),,atky=(/ly),(2/ly),(3/ly),,andatkz=(/lz),(2/lz),(3/lz),Eachintersectionpointrepresentsadistinct(one-particle)stationarystate(Figure5.3).
Eachblockinthisgrid,andhencealsoeachstate,occupiesavolumeof“k-space,”whereV
lxlylzisthespatialvolumeoftheobjectitself.
NowsupposeoursamplecontainsNatoms,andeachatomcontributesqfreeelectrons.
Butelectronsareinfactidentical
fermionssubjecttothePauliexclusionprinciple,soonlytwoofthemcanoccupyanygivenstate.
Theywillfilluponeoctant(八分圓)ofasphereink-space,whoseradiuskFisdeterminedbythefactthateachpairofelectronsrequiresavolume
3/V(seeEq.[5.40]):Thuswhereisthefreeelectrondensity(thenumberoffreeelectronsperunitvolume).
Theboundaryseparatingoccupiedandunoccupiedstates,ink-space,iscalledtheFermisurface(hencethesubscriptF).
ThemaximumoccupiedenergyiscalledtheFermienergy
EF
;evidently,forafreeelectrongas,Thetotalenergyoftheelectrongascanbecalculatedasfollows:ashellofthicknessdk(Figure5.4)containsavolumesothenumberofelectronstatesintheshellis
Eachofthesestatescarriesanenergy
?2k2/2m(Eq.[5.39]),sotheenergyoftheshellis
andhencethetotalenergyisThisquantummechanicalenergyplaysaroleratheranalogoustotheinternalthermalenergy(U)ofanordinarygas.
Inparticular,itexertsapressureonthewalls,foriftheboxexpandsbyanamountdV,thetotalenergydecreases:andthisshowsupasworkdoneontheoutside(dW=PdV)bythequantumpressure
P.EvidentlyHere,then,isaparticleanswertothequestionofwhyacoldsolidobjectdoesn’tsimplycollapse:Thereisastabilizinginternalpressurethathasnothingtodowithelectron-electronrepulsion(whichwehaveignored)orthermalmotion(whichwehaveexcluded)butisstrictlyquantummechanical,andderivesultimatelyfromtheantisymmetrizationrequirementforthewavefunctionsofidenticalfermions.
Itissometimescalleddegeneracy(簡(jiǎn)并)pressure,although“exclusion(排斥)pressure”mightbeabetterterm.We’renowgoingtoimproveonthefreeelectronmodelbyincludingtheforcesexertedontheelectronsbytheregularlyspaced,positivelycharged,essentiallystationarynuclei.
Thequalitativebehaviorofsolidsisdictatedtoaremarkabledegreebythemerefactthatthispotentialisperiodic—itsactualshapeisrelevantonlytothefinerdetails.Wearegoingtodevelopthesimplestpossibleexample:aone-dimensionalDiraccomb(梳),consistingofevenlyspaced-functionwells(Figure5.5).Butbeforewegettothat,weneedtoknowabitaboutthegeneraltheoryofperiodicpotentials.Consider,then,asingleparticlesubjecttoaperiodicpotentialinonedimension:Bloch’stheorem:ThesolutionstotheSchr?dingerequation,
forsuchapotential
Eq.[5.47],canbetakentosatisfytheconditionforsomeconstantK.Proof:
LetDbethe“displacement”operator:
ByvirtueofEq.[5.47],DcommuteswiththeHamiltonian:andhence(seeSection3.4.1)wearefreetochooseeigenfunctionsofHthataresimultaneouslyeigenfunctionsofD:D=,orforsomeconstantK.QED.Nowiscertainlynotzero,so,likeanynonzerocomplexnumber,itcanbeexpressedasanexponential:
AtthisstageEq.[5.53]ismerelyastrangewaytowritetheeigenvalue
,butinamomentwewilldiscoverthatKisinfactreal,sothatalthough(x)itself
isnot
periodic,|(x)|2is:asonewouldcertainlyexpect.
Ofcourse,norealsolidgoesonforever,andtheedgesaregoingtospoiltheperiodicityofV(x)andrenderBloch’stheoreminapplicable.However,foranymacroscopiccrystal,containingsomethingontheorderofAvogadro’s(阿伏伽德羅)numberofatoms,itishardlyimaginablethatedgeeffectscansignificantlyinfluencethebehaviorofelectronsdeepinside.ThissuggeststhefollowingdevicetosalvageBloch’stheorem:Wewrapthex-axisaroundinacircleandconnectitontoitstail,afteralargenumberN1023ofperiods;formally,weimposetheboundaryconditionItfollows(fromEq.[5.49])thatsoeiNKa
=1orNka
=2n,orInparticular,forthisarrangementKisnecessarilyreal.ThevirtueofBloch’stheoremisthatweneedonlysolvetheSchr?dingerequationwithina
singlecell(say,ontheinterval0
x
a);recursiveapplicationofEq.[5.49]generatesthesolutioneverywhereelse.
Nowsupposethepotentialconsistsofalongstringof-functionwells(theDiraccomb):Thewellsaresupposedtorepresent,verycrudely,theelectricalattractionofthenucleiinthelattice.Noonewouldpretendthatthisisarealisticmodel,butremember,itisonlytheeffectofperiodicitythatconcernsushere;theclassicstudyusedarepeatingrectangularpattern,andmanyauthorsstillpreferthatone.
Inther
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 安置房門面合同范例
- 影視演員簽約合同范例
- 工廠車間包合同模板
- 對(duì)合同范例應(yīng)答
- 小區(qū)內(nèi)種菜合同范例
- pvc泳池合同范例
- 工地用車協(xié)議合同范例
- 市政維護(hù)監(jiān)理合同范例
- 兼職做飯合同模板
- 存貨處置合同范例
- 教育部新版本科專業(yè)目錄(2012年)
- 七年級(jí)英語(yǔ)上培優(yōu)扶差記錄表
- 全國(guó)防返貧監(jiān)測(cè)信息系統(tǒng)業(yè)務(wù)管理子系統(tǒng)操作手冊(cè)
- 2022年數(shù)學(xué)廣角內(nèi)容解讀及教學(xué)思考
- 二級(jí)減速器箱體蓋工藝卡片
- 互聯(lián)網(wǎng)高速專線電路開通測(cè)試報(bào)告[寶典]
- 虎牌電飯煲中文使用說(shuō)明書
- 餐飲合同范本
- 人教版初中地理七年級(jí)上冊(cè)《地球自轉(zhuǎn)》說(shuō)課稿
- 高職院校課程標(biāo)準(zhǔn)模板
- 注塑品質(zhì)檢驗(yàn)標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論