云南省昭通市大關(guān)縣民族中學(xué)2023年高三下學(xué)期5月月考數(shù)學(xué)試題_第1頁(yè)
云南省昭通市大關(guān)縣民族中學(xué)2023年高三下學(xué)期5月月考數(shù)學(xué)試題_第2頁(yè)
云南省昭通市大關(guān)縣民族中學(xué)2023年高三下學(xué)期5月月考數(shù)學(xué)試題_第3頁(yè)
云南省昭通市大關(guān)縣民族中學(xué)2023年高三下學(xué)期5月月考數(shù)學(xué)試題_第4頁(yè)
云南省昭通市大關(guān)縣民族中學(xué)2023年高三下學(xué)期5月月考數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

云南省昭通市大關(guān)縣民族中學(xué)2023年高三下學(xué)期5月月考數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在中,點(diǎn),分別為,的中點(diǎn),若,,且滿(mǎn)足,則等于()A.2 B. C. D.2.若函數(shù)的圖象如圖所示,則的解析式可能是()A. B. C. D.3.三棱錐中,側(cè)棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.4.已知函數(shù)的定義域?yàn)?,則函數(shù)的定義域?yàn)椋ǎ〢. B.C. D.5.已知復(fù)數(shù),其中,,是虛數(shù)單位,則()A. B. C. D.6.如圖所示,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,線(xiàn)段B1D1上有兩個(gè)動(dòng)點(diǎn)E、F且EF=,則下列結(jié)論中錯(cuò)誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線(xiàn)AE,BF所成的角為定值7.為了研究國(guó)民收入在國(guó)民之間的分配,避免貧富過(guò)分懸殊,美國(guó)統(tǒng)計(jì)學(xué)家勞倫茨提出了著名的勞倫茨曲線(xiàn),如圖所示.勞倫茨曲線(xiàn)為直線(xiàn)時(shí),表示收入完全平等.勞倫茨曲線(xiàn)為折線(xiàn)時(shí),表示收入完全不平等.記區(qū)域?yàn)椴黄降葏^(qū)域,表示其面積,為的面積,將稱(chēng)為基尼系數(shù).對(duì)于下列說(shuō)法:①越小,則國(guó)民分配越公平;②設(shè)勞倫茨曲線(xiàn)對(duì)應(yīng)的函數(shù)為,則對(duì),均有;③若某國(guó)家某年的勞倫茨曲線(xiàn)近似為,則;④若某國(guó)家某年的勞倫茨曲線(xiàn)近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④8.在四面體中,為正三角形,邊長(zhǎng)為6,,,,則四面體的體積為()A. B. C.24 D.9.已知命題:是“直線(xiàn)和直線(xiàn)互相垂直”的充要條件;命題:函數(shù)的最小值為4.給出下列命題:①;②;③;④,其中真命題的個(gè)數(shù)為()A.1 B.2 C.3 D.410.函數(shù)f(x)=lnA. B. C. D.11.的二項(xiàng)展開(kāi)式中,的系數(shù)是()A.70 B.-70 C.28 D.-2812.若的展開(kāi)式中的系數(shù)為150,則()A.20 B.15 C.10 D.25二、填空題:本題共4小題,每小題5分,共20分。13.在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(為參數(shù)),曲線(xiàn)的參數(shù)方程為(為參數(shù)).(1)求直線(xiàn)和曲線(xiàn)的普通方程;(2)設(shè)為曲線(xiàn)上的動(dòng)點(diǎn),求點(diǎn)到直線(xiàn)距離的最小值及此時(shí)點(diǎn)的坐標(biāo).14.已知隨機(jī)變量服從正態(tài)分布,,則__________.15.設(shè)是公差不為0的等差數(shù)列的前n項(xiàng)和,且,則______.16.已知雙曲線(xiàn)的一條漸近線(xiàn)為,且經(jīng)過(guò)拋物線(xiàn)的焦點(diǎn),則雙曲線(xiàn)的標(biāo)準(zhǔn)方程為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)橢圓E:(a,b>0)過(guò)M(2,),N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),(1)求橢圓E的方程;(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線(xiàn)與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫(xiě)出該圓的方程,若不存在說(shuō)明理由.18.(12分)在平面直角坐標(biāo)系xOy中,曲線(xiàn)C的參數(shù)方程為(為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位,建立極坐標(biāo)系.(1)設(shè)直線(xiàn)l的極坐標(biāo)方程為,若直線(xiàn)l與曲線(xiàn)C交于兩點(diǎn)A.B,求AB的長(zhǎng);(2)設(shè)M、N是曲線(xiàn)C上的兩點(diǎn),若,求面積的最大值.19.(12分)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=2Sn+1(1)求數(shù)列{an}(2)設(shè)cn=bnan,求數(shù)列20.(12分)在直角坐標(biāo)系中,直線(xiàn)l過(guò)點(diǎn),且傾斜角為,以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為.求直線(xiàn)l的參數(shù)方程和曲線(xiàn)C的直角坐標(biāo)方程,并判斷曲線(xiàn)C是什么曲線(xiàn);設(shè)直線(xiàn)l與曲線(xiàn)C相交與M,N兩點(diǎn),當(dāng),求的值.21.(12分)在開(kāi)展學(xué)習(xí)強(qiáng)國(guó)的活動(dòng)中,某校高三數(shù)學(xué)教師成立了黨員和非黨員兩個(gè)學(xué)習(xí)組,其中黨員學(xué)習(xí)組有4名男教師、1名女教師,非黨員學(xué)習(xí)組有2名男教師、2名女教師,高三數(shù)學(xué)組計(jì)劃從兩個(gè)學(xué)習(xí)組中隨機(jī)各選2名教師參加學(xué)校的挑戰(zhàn)答題比賽.(1)求選出的4名選手中恰好有一名女教師的選派方法數(shù);(2)記X為選出的4名選手中女教師的人數(shù),求X的概率分布和數(shù)學(xué)期望.22.(10分)已知,函數(shù).(1)若,求的單調(diào)遞增區(qū)間;(2)若,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

選取為基底,其他向量都用基底表示后進(jìn)行運(yùn)算.【詳解】由題意是的重心,,∴,,∴,故選:D.【點(diǎn)睛】本題考查向量的數(shù)量積,解題關(guān)鍵是選取兩個(gè)不共線(xiàn)向量作為基底,其他向量都用基底表示參與運(yùn)算,這樣做目標(biāo)明確,易于操作.2、A【解析】

由函數(shù)性質(zhì),結(jié)合特殊值驗(yàn)證,通過(guò)排除法求得結(jié)果.【詳解】對(duì)于選項(xiàng)B,為奇函數(shù)可判斷B錯(cuò)誤;對(duì)于選項(xiàng)C,當(dāng)時(shí),,可判斷C錯(cuò)誤;對(duì)于選項(xiàng)D,,可知函數(shù)在第一象限的圖象無(wú)增區(qū)間,故D錯(cuò)誤;故選:A.【點(diǎn)睛】本題考查已知函數(shù)的圖象判斷解析式問(wèn)題,通過(guò)函數(shù)性質(zhì)及特殊值利用排除法是解決本題的關(guān)鍵,難度一般.3、B【解析】由題,側(cè)棱底面,,,,則根據(jù)余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點(diǎn)睛:本題考查的知識(shí)點(diǎn)是球內(nèi)接多面體,熟練掌握球的半徑公式是解答的關(guān)鍵.4、A【解析】試題分析:由題意,得,解得,故選A.考點(diǎn):函數(shù)的定義域.5、D【解析】試題分析:由,得,則,故選D.考點(diǎn):1、復(fù)數(shù)的運(yùn)算;2、復(fù)數(shù)的模.6、D【解析】

A.通過(guò)線(xiàn)面的垂直關(guān)系可證真假;B.根據(jù)線(xiàn)面平行可證真假;C.根據(jù)三棱錐的體積計(jì)算的公式可證真假;D.根據(jù)列舉特殊情況可證真假.【詳解】A.因?yàn)?,所以平面,又因?yàn)槠矫妫?,故正確;B.因?yàn)?,所以,且平面,平面,所以平面,故正確;C.因?yàn)闉槎ㄖ?,到平面的距離為,所以為定值,故正確;D.當(dāng),,取為,如下圖所示:因?yàn)?,所以異面直線(xiàn)所成角為,且,當(dāng),,取為,如下圖所示:因?yàn)?,所以四邊形是平行四邊形,所以,所以異面直線(xiàn)所成角為,且,由此可知:異面直線(xiàn)所成角不是定值,故錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查立體幾何中的綜合應(yīng)用,涉及到線(xiàn)面垂直與線(xiàn)面平行的證明、異面直線(xiàn)所成角以及三棱錐體積的計(jì)算,難度較難.注意求解異面直線(xiàn)所成角時(shí),將直線(xiàn)平移至同一平面內(nèi).7、A【解析】

對(duì)于①,根據(jù)基尼系數(shù)公式,可得基尼系數(shù)越小,不平等區(qū)域的面積越小,國(guó)民分配越公平,所以①正確.對(duì)于②,根據(jù)勞倫茨曲線(xiàn)為一條凹向橫軸的曲線(xiàn),由圖得,均有,可得,所以②錯(cuò)誤.對(duì)于③,因?yàn)?,所以,所以③錯(cuò)誤.對(duì)于④,因?yàn)?,所以,所以④正確.故選A.8、A【解析】

推導(dǎo)出,分別取的中點(diǎn),連結(jié),則,推導(dǎo)出,從而,進(jìn)而四面體的體積為,由此能求出結(jié)果.【詳解】解:在四面體中,為等邊三角形,邊長(zhǎng)為6,,,,,,分別取的中點(diǎn),連結(jié),則,且,,,,平面,平面,,四面體的體積為:.故答案為:.【點(diǎn)睛】本題考查四面體體積的求法,考查空間中線(xiàn)線(xiàn),線(xiàn)面,面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.9、A【解析】

先由兩直線(xiàn)垂直的條件判斷出命題p的真假,由基本不等式判斷命題q的真假,從而得出p,q的非命題的真假,繼而判斷復(fù)合命題的真假,可得出選項(xiàng).【詳解】已知對(duì)于命題,由得,所以命題為假命題;關(guān)于命題,函數(shù),當(dāng)時(shí),,當(dāng)即時(shí),取等號(hào),當(dāng)時(shí),函數(shù)沒(méi)有最小值,所以命題為假命題.所以和是真命題,所以為假命題,為假命題,為假命題,為真命題,所以真命題的個(gè)數(shù)為1個(gè).故選:A.【點(diǎn)睛】本題考查直線(xiàn)的垂直的判定和基本不等式的應(yīng)用,以及復(fù)合命題的真假的判斷,注意運(yùn)用基本不等式時(shí),滿(mǎn)足所需的條件,屬于基礎(chǔ)題.10、C【解析】因?yàn)閒x=lnx2-4x+4x-23=11、A【解析】試題分析:由題意得,二項(xiàng)展開(kāi)式的通項(xiàng)為,令,所以的系數(shù)是,故選A.考點(diǎn):二項(xiàng)式定理的應(yīng)用.12、C【解析】

通過(guò)二項(xiàng)式展開(kāi)式的通項(xiàng)分析得到,即得解.【詳解】由已知得,故當(dāng)時(shí),,于是有,則.故選:C【點(diǎn)睛】本題主要考查二項(xiàng)式展開(kāi)式的通項(xiàng)和系數(shù)問(wèn)題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、(1),;(2),.【解析】

(1)利用代入消參的方法即可將兩個(gè)參數(shù)方程轉(zhuǎn)化為普通方程;(2)利用參數(shù)方程,結(jié)合點(diǎn)到直線(xiàn)的距離公式,將問(wèn)題轉(zhuǎn)化為求解二次函數(shù)最值的問(wèn)題,即可求得.【詳解】(1)直線(xiàn)的普通方程為.在曲線(xiàn)的參數(shù)方程中,,所以曲線(xiàn)的普通方程為.(2)設(shè)點(diǎn).點(diǎn)到直線(xiàn)的距離.當(dāng)時(shí),,所以點(diǎn)到直線(xiàn)的距離的最小值為.此時(shí)點(diǎn)的坐標(biāo)為.【點(diǎn)睛】本題考查將參數(shù)方程轉(zhuǎn)化為普通方程,以及利用參數(shù)方程求距離的最值問(wèn)題,屬中檔題.14、0.22.【解析】

正態(tài)曲線(xiàn)關(guān)于x=μ對(duì)稱(chēng),根據(jù)對(duì)稱(chēng)性以及概率和為1求解即可?!驹斀狻俊军c(diǎn)睛】本題考查正態(tài)分布曲線(xiàn)的特點(diǎn)及曲線(xiàn)所表示的意義,是一個(gè)基礎(chǔ)題.15、18【解析】

將已知已知轉(zhuǎn)化為的形式,化簡(jiǎn)后求得,利用等差數(shù)列前公式化簡(jiǎn),由此求得表達(dá)式的值.【詳解】因?yàn)椋?故填:.【點(diǎn)睛】本題考查等差數(shù)列基本量的計(jì)算,考查等差數(shù)列的性質(zhì)以及求和,考查運(yùn)算求解能力,屬于基礎(chǔ)題.16、【解析】

設(shè)以直線(xiàn)為漸近線(xiàn)的雙曲線(xiàn)的方程為,再由雙曲線(xiàn)經(jīng)過(guò)拋物線(xiàn)焦點(diǎn),能求出雙曲線(xiàn)方程.【詳解】解:設(shè)以直線(xiàn)為漸近線(xiàn)的雙曲線(xiàn)的方程為,∵雙曲線(xiàn)經(jīng)過(guò)拋物線(xiàn)焦點(diǎn),∴,∴雙曲線(xiàn)方程為,故答案為:.【點(diǎn)睛】本題主要考查雙曲線(xiàn)方程的求法,考查拋物線(xiàn)、雙曲線(xiàn)簡(jiǎn)單性質(zhì)的合理運(yùn)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】試題分析:(1)因?yàn)闄E圓E:(a,b>0)過(guò)M(2,),N(,1)兩點(diǎn),所以解得所以橢圓E的方程為(2)假設(shè)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線(xiàn)與橢圓E恒有兩個(gè)交點(diǎn)A,B,且,設(shè)該圓的切線(xiàn)方程為解方程組得,即,則△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因?yàn)橹本€(xiàn)為圓心在原點(diǎn)的圓的一條切線(xiàn),所以圓的半徑為,,,所求的圓為,此時(shí)圓的切線(xiàn)都滿(mǎn)足或,而當(dāng)切線(xiàn)的斜率不存在時(shí)切線(xiàn)為與橢圓的兩個(gè)交點(diǎn)為或滿(mǎn)足,綜上,存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線(xiàn)與橢圓E恒有兩個(gè)交點(diǎn)A,B,且.考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,直線(xiàn)與橢圓的位置關(guān)系,圓與橢圓的位置關(guān)系.點(diǎn)評(píng):中檔題,涉及直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系問(wèn)題,往往要利用韋達(dá)定理.存在性問(wèn)題,往往從假設(shè)存在出發(fā),運(yùn)用題中條件探尋得到存在的是否條件具備.(2)小題解答中,集合韋達(dá)定理,應(yīng)用平面向量知識(shí)證明了圓的存在性.18、(1);(2)1.【解析】

(1)利用參數(shù)方程、普通方程、極坐標(biāo)方程間的互化公式即可;(2),,由(1)通過(guò)計(jì)算得到,即最大值為1.【詳解】(1)將曲線(xiàn)C的參數(shù)方程化為普通方程為,即;再將,,代入上式,得,故曲線(xiàn)C的極坐標(biāo)方程為,顯然直線(xiàn)l與曲線(xiàn)C相交的兩點(diǎn)中,必有一個(gè)為原點(diǎn)O,不妨設(shè)O與A重合,即.(2)不妨設(shè),,則面積為當(dāng),即取時(shí),.【點(diǎn)睛】本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,三角形面積的最值問(wèn)題,是一道容易題.19、(1)an=(2)Tn【解析】

(1)利用an與Sn的遞推關(guān)系可以an的通項(xiàng)公式;P點(diǎn)代入直線(xiàn)方程得b【詳解】(1)由an+1=2S兩式相減得an+1-a又a2=2S1+1=3,所以a由點(diǎn)P(bn,bn+1則數(shù)列{bn(2)因?yàn)閏n=b則13兩式相減得:23所以Tn【點(diǎn)睛】用遞推關(guān)系an=Sn-20、(Ⅰ)曲線(xiàn)是焦點(diǎn)在軸上的橢圓;(Ⅱ).【解析】試題分析:(1)由題易知,直線(xiàn)的參數(shù)方程為,(為參數(shù)),;曲線(xiàn)的直角坐標(biāo)方程為,橢圓;(2)將直線(xiàn)代入橢圓得到,所以,解得.試題解析:(Ⅰ)直線(xiàn)的參數(shù)方程為.曲線(xiàn)的直角坐標(biāo)方程為,即,所以曲線(xiàn)是焦點(diǎn)在軸上的橢圓.(Ⅱ)將的參數(shù)方程代入曲線(xiàn)的直角坐標(biāo)方程為得,,得,,21、(1)28種;(2)分布見(jiàn)解析,.【解析】

(1)分這名女教師分別來(lái)自黨員學(xué)習(xí)組與非黨員學(xué)習(xí)組,可得恰好有一名女教師的選派方法數(shù);(2)X的可能取值為,再求出X的每個(gè)取值的概率,可得X的概率分布和數(shù)學(xué)期望.【詳解】解:(1)選出的4名選手中恰好有一名女生的選派方

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論