浙江省臺州市路橋區(qū)重點達標(biāo)名校2021-2022學(xué)年中考三模數(shù)學(xué)試題含解析_第1頁
浙江省臺州市路橋區(qū)重點達標(biāo)名校2021-2022學(xué)年中考三模數(shù)學(xué)試題含解析_第2頁
浙江省臺州市路橋區(qū)重點達標(biāo)名校2021-2022學(xué)年中考三模數(shù)學(xué)試題含解析_第3頁
浙江省臺州市路橋區(qū)重點達標(biāo)名校2021-2022學(xué)年中考三模數(shù)學(xué)試題含解析_第4頁
浙江省臺州市路橋區(qū)重點達標(biāo)名校2021-2022學(xué)年中考三模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江省臺州市路橋區(qū)重點達標(biāo)名校2021-2022學(xué)年中考三模數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若關(guān)于的一元二次方程的一個根是0,則的值是()A.1 B.-1 C.1或-1 D.2.已知是二元一次方程組的解,則的算術(shù)平方根為()A.±2 B. C.2 D.43.如圖,AB是⊙O的直徑,點E為BC的中點,AB=4,∠BED=120°,則圖中陰影部分的面積之和為()A.1 B. C. D.4.如圖,一個斜邊長為10cm的紅色三角形紙片,一個斜邊長為6cm的藍色三角形紙片,一張黃色的正方形紙片,拼成一個直角三角形,則紅、藍兩張紙片的面積之和是()A.60cm2 B.50cm2 C.40cm2 D.30cm25.如圖所示,在△ABC中,∠C=90°,AC=4,BC=3,將△ABC繞點A逆時針旋轉(zhuǎn),使點C落在線段AB上的點E處,點B落在點D處,則BD兩點間的距離為()A.2 B. C. D.6.如圖,是一個工件的三視圖,則此工件的全面積是()A.60πcm2 B.90πcm2 C.96πcm2 D.120πcm27.如圖,O為坐標(biāo)原點,四邊彤OACB是菱形,OB在x軸的正半軸上,sin∠AOB=45,反比例函數(shù)yA.10B.9C.8D.68.如圖,在矩形ABCD中,E是AD上一點,沿CE折疊△CDE,點D恰好落在AC的中點F處,若CD=,則△ACE的面積為()A.1 B. C.2 D.29.?dāng)?shù)據(jù)”1,2,1,3,1”的眾數(shù)是()A.1B.1.5C.1.6D.310.關(guān)于2、6、1、10、6的這組數(shù)據(jù),下列說法正確的是()A.這組數(shù)據(jù)的眾數(shù)是6 B.這組數(shù)據(jù)的中位數(shù)是1C.這組數(shù)據(jù)的平均數(shù)是6 D.這組數(shù)據(jù)的方差是10二、填空題(共7小題,每小題3分,滿分21分)11.如圖,將邊長為的正方形ABCD繞點A逆時針方向旋轉(zhuǎn)30°后得到正方形A′B′C′D′,則圖中陰影部分面積為_______平方單位.12.如圖,⊙O中,弦AB、CD相交于點P,若∠A=30°,∠APD=70°,則∠B等于_____.13.如圖,已知直線,直線m、n與a、b、c分別交于點A、C、E和B、D、F,如果,,,那么______.14.釣魚島是中國的固有領(lǐng)土,位于中國東海,面積約4400000平方米,數(shù)據(jù)4400000用科學(xué)記數(shù)法表示為______.15.半徑是6cm的圓內(nèi)接正三角形的邊長是_____cm.16.小明統(tǒng)計了家里3月份的電話通話清單,按通話時間畫出頻數(shù)分布直方圖(如圖所示),則通話時間不足10分鐘的通話次數(shù)的頻率是_____.17.若代數(shù)式的值不小于代數(shù)式的值,則x的取值范圍是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖1,在平行四邊形ABCD中,對角線AC與BD相交于點O,經(jīng)過點O的直線與邊AB相交于點E,與邊CD相交于點F.(1)求證:OE=OF;(2)如圖2,連接DE,BF,當(dāng)DE⊥AB時,在不添加其他輔助線的情況下,直接寫出腰長等于BD的所有的等腰三角形.19.(5分)圖1是某市2009年4月5日至14日每天最低氣溫的折線統(tǒng)計圖.圖2是該市2007年4月5日至14日每天最低氣溫的頻數(shù)分布直方圖,根據(jù)圖1提供的信息,補全圖2中頻數(shù)分布直方圖;在這10天中,最低氣溫的眾數(shù)是____,中位數(shù)是____,方差是_____.請用扇形圖表示出這十天里溫度的分布情況.20.(8分)如圖1,反比例函數(shù)(x>0)的圖象經(jīng)過點A(,1),射線AB與反比例函數(shù)圖象交于另一點B(1,a),射線AC與y軸交于點C,∠BAC=75°,AD⊥y軸,垂足為D.(1)求k的值;(2)求tan∠DAC的值及直線AC的解析式;(3)如圖2,M是線段AC上方反比例函數(shù)圖象上一動點,過M作直線l⊥x軸,與AC相交于點N,連接CM,求△CMN面積的最大值.21.(10分)4月9日上午8時,2017徐州國際馬拉松賽鳴槍開跑,一名歲的男子帶著他的兩個孩子一同參加了比賽,下面是兩個孩子與記者的對話:根據(jù)對話內(nèi)容,請你用方程的知識幫記者求出哥哥和妹妹的年齡.22.(10分)在平面直角坐標(biāo)系中,某個函數(shù)圖象上任意兩點的坐標(biāo)分別為(﹣t,y1)和(t,y2)(其中t為常數(shù)且t>0),將x<﹣t的部分沿直線y=y(tǒng)1翻折,翻折后的圖象記為G1;將x>t的部分沿直線y=y(tǒng)2翻折,翻折后的圖象記為G2,將G1和G2及原函數(shù)圖象剩余的部分組成新的圖象G.例如:如圖,當(dāng)t=1時,原函數(shù)y=x,圖象G所對應(yīng)的函數(shù)關(guān)系式為y=.(1)當(dāng)t=時,原函數(shù)為y=x+1,圖象G與坐標(biāo)軸的交點坐標(biāo)是.(2)當(dāng)t=時,原函數(shù)為y=x2﹣2x①圖象G所對應(yīng)的函數(shù)值y隨x的增大而減小時,x的取值范圍是.②圖象G所對應(yīng)的函數(shù)是否有最大值,如果有,請求出最大值;如果沒有,請說明理由.(3)對應(yīng)函數(shù)y=x2﹣2nx+n2﹣3(n為常數(shù)).①n=﹣1時,若圖象G與直線y=2恰好有兩個交點,求t的取值范圍.②當(dāng)t=2時,若圖象G在n2﹣2≤x≤n2﹣1上的函數(shù)值y隨x的增大而減小,直接寫出n的取值范圍.23.(12分)如圖,⊙O是Rt△ABC的外接圓,∠C=90°,tanB=,過點B的直線l是⊙O的切線,點D是直線l上一點,過點D作DE⊥CB交CB延長線于點E,連接AD,交⊙O于點F,連接BF、CD交于點G.(1)求證:△ACB∽△BED;(2)當(dāng)AD⊥AC時,求的值;(3)若CD平分∠ACB,AC=2,連接CF,求線段CF的長.24.(14分)反比例函數(shù)的圖象經(jīng)過點A(2,3).(1)求這個函數(shù)的解析式;(2)請判斷點B(1,6)是否在這個反比例函數(shù)的圖象上,并說明理由.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據(jù)一元二次方程的解的定義把x=0代入方程得到關(guān)于a的一元二次方程,然后解此方程即可【詳解】把x=0代入方程得,解得a=±1.∵原方程是一元二次方程,所以

,所以,故故答案為B【點睛】本題考查了一元二次方程的解的定義:使一元二次方程左右兩邊成立的未知數(shù)的值叫一元二次方程的解.2、C【解析】二元一次方程組的解和解二元一次方程組,求代數(shù)式的值,算術(shù)平方根.【分析】∵是二元一次方程組的解,∴,解得.∴.即的算術(shù)平方根為1.故選C.3、C【解析】連接AE,OD,OE.∵AB是直徑,∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD.∴△AOD是等邊三角形.∴∠A=60°.又∵點E為BC的中點,∠AED=90°,∴AB=AC.∴△ABC是等邊三角形,∴△EDC是等邊三角形,且邊長是△ABC邊長的一半2,高是.∴∠BOE=∠EOD=60°,∴和弦BE圍成的部分的面積=和弦DE圍成的部分的面積.∴陰影部分的面積=.故選C.4、D【解析】

標(biāo)注字母,根據(jù)兩直線平行,同位角相等可得∠B=∠AED,然后求出△ADE和△EFB相似,根據(jù)相似三角形對應(yīng)邊成比例求出,即,設(shè)BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根據(jù)紅、藍兩張紙片的面積之和等于大三角形的面積減去正方形的面積計算即可得解.【詳解】解:如圖,∵正方形的邊DE∥CF,∴∠B=∠AED,∵∠ADE=∠EFB=90°,∴△ADE∽△EFB,∴,∴,設(shè)BF=3a,則EF=5a,∴BC=3a+5a=8a,AC=8a×=a,在Rt△ABC中,AC1+BC1=AB1,即(a)1+(8a)1=(10+6)1,解得a1=,紅、藍兩張紙片的面積之和=×a×8a-(5a)1,=a1-15a1,=a1,=×,=30cm1.故選D.【點睛】本題考查根據(jù)相似三角形的性質(zhì)求出直角三角形的兩直角邊,利用紅、藍兩張紙片的面積之和等于大三角形的面積減去正方形的面積求解是關(guān)鍵.5、C【解析】解:連接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵將△ABC繞點A逆時針旋轉(zhuǎn),使點C落在線段AB上的點E處,點B落在點D處,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故選C.點睛:本題考查了勾股定理和旋轉(zhuǎn)的基本性質(zhì),解決此類問題的關(guān)鍵是掌握旋轉(zhuǎn)的基本性質(zhì),特別是線段之間的關(guān)系.題目整體較為簡單,適合隨堂訓(xùn)練.6、C【解析】

先根據(jù)三視圖得到圓錐的底面圓的直徑為12cm,高為8cm,再計算母線長為10,根據(jù)圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形半徑等于圓錐的母線長計算圓錐的側(cè)面積和底面積的和即可.【詳解】圓錐的底面圓的直徑為12cm,高為8cm,所以圓錐的母線長==10,所以此工件的全面積=π62+2π610=96π(cm2).故答案選C.【點睛】本題考查的知識點是圓錐的面積及由三視圖判斷幾何體,解題的關(guān)鍵是熟練的掌握圓錐的面積及由三視圖判斷幾何體.7、A【解析】過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,設(shè)OA=a,BF=b,通過解直角三角形分別找出點A、F的坐標(biāo),結(jié)合反比例函數(shù)圖象上點的坐標(biāo)特征即可求出a、b的值,通過分割圖形求面積,最終找出△AOF的面積等于梯形AMNF的面積,利用梯形的面積公式即可得出結(jié)論.解:過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,如圖所示.設(shè)OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45∴AM=OA?sin∠AOB=45a,OM=OA2∴點A的坐標(biāo)為(35a,4∵點A在反比例函數(shù)y=12x∴35a×45a=1225解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四邊形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=45∴FN=BF?sin∠FBN=45b,BN=BF2∴點F的坐標(biāo)為(10+35b,4∵點F在反比例函數(shù)y=12x∴(10+35b)×4S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10故選A.“點睛”本題主要考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是找出S△AOF=12S菱形OBCA8、B【解析】

由折疊的性質(zhì)可得CD=CF=,DE=EF,AC=,由三角形面積公式可求EF的長,即可求△ACE的面積.【詳解】解:∵點F是AC的中點,∴AF=CF=AC,∵將△CDE沿CE折疊到△CFE,∴CD=CF=,DE=EF,∴AC=,在Rt△ACD中,AD==1.∵S△ADC=S△AEC+S△CDE,∴×AD×CD=×AC×EF+×CD×DE∴1×=EF+DE,∴DE=EF=1,∴S△AEC=××1=.故選B.【點睛】本題考查了翻折變換,勾股定理,熟練運用三角形面積公式求得DE=EF=1是解決本題的關(guān)鍵.9、A【解析】

眾數(shù)指一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),根據(jù)眾數(shù)的定義就可以求解.【詳解】在這一組數(shù)據(jù)中1是出現(xiàn)次數(shù)最多的,故眾數(shù)是1.故選:A.【點睛】本題為統(tǒng)計題,考查眾數(shù)的意義.眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.10、A【解析】

根據(jù)方差、算術(shù)平均數(shù)、中位數(shù)、眾數(shù)的概念進行分析.【詳解】數(shù)據(jù)由小到大排列為1,2,6,6,10,它的平均數(shù)為(1+2+6+6+10)=5,數(shù)據(jù)的中位數(shù)為6,眾數(shù)為6,數(shù)據(jù)的方差=[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.故選A.考點:方差;算術(shù)平均數(shù);中位數(shù);眾數(shù).二、填空題(共7小題,每小題3分,滿分21分)11、6﹣2【解析】

由旋轉(zhuǎn)角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;設(shè)B′C′和CD的交點是O,連接OA,構(gòu)造全等三角形,用S陰影部分=S正方形﹣S四邊形AB′OD,計算面積即可.【詳解】解:設(shè)B′C′和CD的交點是O,連接OA,∵AD=AB′,AO=AO,∠D=∠B′=90°,∴Rt△ADO≌Rt△AB′O,∴∠OAD=∠OAB′=30°,∴OD=OB′=,S四邊形AB′OD=2S△AOD=2××=2,∴S陰影部分=S正方形﹣S四邊形AB′OD=6﹣2.【點睛】此題的重點是能夠計算出四邊形的面積.注意發(fā)現(xiàn)全等三角形.12、40°【解析】

由∠A=30°,∠APD=70°,利用三角形外角的性質(zhì),即可求得∠C的度數(shù),又由在同圓或等圓中,同弧或等弧所對的圓周角相等,即可求得∠B的度數(shù).【詳解】解:∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°,∵∠B與∠C是對的圓周角,∴∠B=∠C=40°.故答案為40°.【點睛】此題考查了圓周角定理與三角形外角的性質(zhì).此題難度不大,解題的關(guān)鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角相等定理的應(yīng)用.13、【解析】

由直線a∥b∥c,根據(jù)平行線分線段成比例定理,即可得,又由AC=3,CE=5,DF=4,即可求得BD的長.【詳解】解:由直線a∥b∥c,根據(jù)平行線分線段成比例定理,即可得,又由AC=3,CE=5,DF=4可得:解得:BD=.故答案為.【點睛】此題考查了平行線分線段成比例定理.題目比較簡單,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.14、

【解析】試題分析:將4400000用科學(xué)記數(shù)法表示為:4.4×1.故答案為4.4×1.考點:科學(xué)記數(shù)法—表示較大的數(shù).15、6【解析】

根據(jù)題意畫出圖形,作出輔助線,利用垂徑定理及等邊三角形的性質(zhì)解答即可.【詳解】如圖所示,OB=OA=6,∵△ABC是正三角形,由于正三角形的中心就是圓的圓心,且正三角形三線合一,所以BO是∠ABC的平分線;∠OBD=60°×=30°,BD=cos30°×6=6×=3;根據(jù)垂徑定理,BC=2×BD=6,故答案為6.【點睛】本題主要考查了正多邊形和圓,正三角形的性質(zhì),熟練掌握等邊三角形的性質(zhì)是解題的關(guān)鍵,根據(jù)圓的內(nèi)接正三角形的特點,求出內(nèi)心到每個頂點的距離,可求出內(nèi)接正三角形的邊長.16、0.7【解析】

用通話時間不足10分鐘的通話次數(shù)除以通話的總次數(shù)即可得.【詳解】由圖可知:小明家3月份通話總次數(shù)為20+15+10+5=50(次);其中通話不足10分鐘的次數(shù)為20+15=35(次),∴通話時間不足10分鐘的通話次數(shù)的頻率是35÷50=0.7.故答案為0.7.17、x≥【解析】

根據(jù)題意列出不等式,依據(jù)解不等式得基本步驟求解可得.【詳解】解:根據(jù)題意,得:,6(3x﹣1)≥5(1﹣5x),18x﹣6≥5﹣25x,18x+25x≥5+6,43x≥11,x≥,故答案為x≥.【點睛】本題主要考查解不等式得基本技能,熟練掌握解一元一次不等式的基本步驟是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)△DOF,△FOB,△EOB,△DOE.【解析】

(1)由四邊形ABCD是平行四邊形,可得OA=OC,AB∥CD,則可證得△AOE≌△COF(ASA),繼而證得OE=OF;

(2)證明四邊形DEBF是矩形,由矩形的性質(zhì)和等腰三角形的性質(zhì)即可得出結(jié)論.【詳解】(1)∵四邊形ABCD是平行四邊形,∴OA=OC,AB∥CD,OB=OD,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF;(2)∵OE=OF,OB=OD,∴四邊形DEBF是平行四邊形,∵DE⊥AB,∴∠DEB=90°,∴四邊形DEBF是矩形,∴BD=EF,∴OD=OB=OE=OF=BD,∴腰長等于BD的所有的等腰三角形為△DOF,△FOB,△EOB,△DOE.【點睛】本題考查了等腰三角形的性質(zhì)與平行四邊形的性質(zhì),解題的關(guān)鍵是熟練的掌握等腰三角形的性質(zhì)與平行四邊形的性質(zhì).19、(1)作圖見解析;(2)7,7.5,2.8;(3)見解析.【解析】

(1)根據(jù)圖1找出8、9、10℃的天數(shù),然后補全統(tǒng)計圖即可;(2)根據(jù)眾數(shù)的定義,找出出現(xiàn)頻率最高的溫度;按照從低到高排列,求出第5、6兩個溫度的平均數(shù)即為中位數(shù);先求出平均數(shù),再根據(jù)方差的定義列式進行計算即可得解;(3)求出7、8、9、10、11℃的天數(shù)在扇形統(tǒng)計圖中所占的度數(shù),然后作出扇形統(tǒng)計圖即可.【詳解】(1)由圖1可知,8℃有2天,9℃有0天,10℃有2天,補全統(tǒng)計圖如圖;(2)根據(jù)條形統(tǒng)計圖,7℃出現(xiàn)的頻率最高,為3天,所以,眾數(shù)是7;按照溫度從小到大的順序排列,第5個溫度為7℃,第6個溫度為8℃,所以,中位數(shù)為(7+8)=7.5;平均數(shù)為(6×2+7×3+8×2+10×2+11)=×80=8,所以,方差=[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],=(8+3+0+8+9),=×28,=2.8;(3)6℃的度數(shù),×360°=72°,7℃的度數(shù),×360°=108°,8℃的度數(shù),×360°=72°,10℃的度數(shù),×360°=72°,11℃的度數(shù),×360°=36°,作出扇形統(tǒng)計圖如圖所示.【點睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力.同時考查中位數(shù)、眾數(shù)的求法:給定n個數(shù)據(jù),按從小到大排序,如果n為奇數(shù),位于中間的那個數(shù)就是中位數(shù);如果n為偶數(shù),位于中間兩個數(shù)的平均數(shù)就是中位數(shù).任何一組數(shù)據(jù),都一定存在中位數(shù)的,但中位數(shù)不一定是這組數(shù)據(jù)量的數(shù).給定一組數(shù)據(jù),出現(xiàn)次數(shù)最多的那個數(shù),稱為這組數(shù)據(jù)的眾數(shù).20、(1);(2),;(3)【解析】試題分析:(1)根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征易得k=2;(2)作BH⊥AD于H,如圖1,根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征確定B點坐標(biāo)為(1,2),則AH=2﹣1,BH=2﹣1,可判斷△ABH為等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根據(jù)特殊角的三角函數(shù)值得tan∠DAC=;由于AD⊥y軸,則OD=1,AD=2,然后在Rt△OAD中利用正切的定義可計算出CD=2,易得C點坐標(biāo)為(0,﹣1),于是可根據(jù)待定系數(shù)法求出直線AC的解析式為y=x﹣1;(3)利用M點在反比例函數(shù)圖象上,可設(shè)M點坐標(biāo)為(t,)(0<t<2),由于直線l⊥x軸,與AC相交于點N,得到N點的橫坐標(biāo)為t,利用一次函數(shù)圖象上點的坐標(biāo)特征得到N點坐標(biāo)為(t,t﹣1),則MN=﹣t+1,根據(jù)三角形面積公式得到S△CMN=?t?(﹣t+1),再進行配方得到S=﹣(t﹣)2+(0<t<2),最后根據(jù)二次函數(shù)的最值問題求解.試題解析:(1)把A(2,1)代入y=,得k=2×1=2;(2)作BH⊥AD于H,如圖1,把B(1,a)代入反比例函數(shù)解析式y(tǒng)=,得a=2,∴B點坐標(biāo)為(1,2),∴AH=2﹣1,BH=2﹣1,∴△ABH為等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=;∵AD⊥y軸,∴OD=1,AD=2,∵tan∠DAC==,∴CD=2,∴OC=1,∴C點坐標(biāo)為(0,﹣1),設(shè)直線AC的解析式為y=kx+b,把A(2,1)、C(0,﹣1)代入得,解得,∴直線AC的解析式為y=x﹣1;(3)設(shè)M點坐標(biāo)為(t,)(0<t<2),∵直線l⊥x軸,與AC相交于點N,∴N點的橫坐標(biāo)為t,∴N點坐標(biāo)為(t,t﹣1),∴MN=﹣(t﹣1)=﹣t+1,∴S△CMN=?t?(﹣t+1)=﹣t2+t+=﹣(t﹣)2+(0<t<2),∵a=﹣<0,∴當(dāng)t=時,S有最大值,最大值為.21、今年妹妹6歲,哥哥10歲.【解析】

試題分析:設(shè)今年妹妹的年齡為x歲,哥哥的年齡為y歲,根據(jù)兩個孩子的對話,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論.試題解析:設(shè)今年妹妹的年齡為x歲,哥哥的年齡為y歲,根據(jù)題意得:解得:.答:今年妹妹6歲,哥哥10歲.考點:二元一次方程組的應(yīng)用.22、(1)(2,0);(2)①﹣≤x≤1或x≥;②圖象G所對應(yīng)的函數(shù)有最大值為;(3)①;②n≤或n≥.【解析】

(1)根據(jù)題意分別求出翻轉(zhuǎn)之后部分的表達式及自變量的取值范圍,將y=0代入,求出x值,即可求出圖象G與坐標(biāo)軸的交點坐標(biāo);(2)畫出函數(shù)草圖,求出翻轉(zhuǎn)點和函數(shù)頂點的坐標(biāo),①根據(jù)圖象的增減性可求出y隨x的增大而減小時,x的取值范圍,②根據(jù)圖象很容易計算出函數(shù)最大值;(3)①將n=﹣1代入到函數(shù)中求出原函數(shù)的表達式,計算y=2時,x的值.據(jù)(2)中的圖象,函數(shù)與y=2恰好有兩個交點時t大于右邊交點的橫坐標(biāo)且-t大于左邊交點的橫坐標(biāo),據(jù)此求解.②畫出函數(shù)草圖,分別計算函數(shù)左邊的翻轉(zhuǎn)點A,右邊的翻轉(zhuǎn)點C,函數(shù)的頂點B的橫坐標(biāo)(可用含n的代數(shù)式表示),根據(jù)函數(shù)草圖以及題意列出關(guān)于n的不等式求解即可.【詳解】(1)當(dāng)x=時,y=,當(dāng)x≥時,翻折后函數(shù)的表達式為:y=﹣x+b,將點(,)坐標(biāo)代入上式并解得:翻折后函數(shù)的表達式為:y=﹣x+2,當(dāng)y=0時,x=2,即函數(shù)與x軸交點坐標(biāo)為:(2,0);同理沿x=﹣翻折后當(dāng)時函數(shù)的表達式為:y=﹣x,函數(shù)與x軸交點坐標(biāo)為:(0,0),因為所以舍去.故答案為:(2,0);(2)當(dāng)t=時,由函數(shù)為y=x2﹣2x構(gòu)建的新函數(shù)G的圖象,如下圖所示:點A、B分別是t=﹣、t=的兩個翻折點,點C是拋物線原頂點,則點A、B、C的橫坐標(biāo)分別為﹣、1、,①函數(shù)值y隨x的增大而減小時,﹣≤x≤1或x≥,故答案為:﹣≤x≤1或x≥;②函數(shù)在點A處取得最大值,x=﹣,y=(﹣)2﹣2×(﹣)=,答:圖象G所對應(yīng)的函數(shù)有最大值為;(3)n=﹣1時,y=x2+2x﹣2,①參考(2)中的圖象知:當(dāng)y=2時,y=x2+2x﹣2=2,解得:x=﹣1±,若圖象G與直線y=2恰好有兩個交點,則t>﹣1且-t>,所以;②函數(shù)的對稱軸為:x=n,令y=x2﹣2nx+n2﹣3=0,則x=n±,當(dāng)t=2時,點A、B、C的橫坐標(biāo)分別為:﹣2,n,2,當(dāng)x=n在y軸左側(cè)時,(n≤0)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論