版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
electronics
/journal/electronics
Electronics2021,10,1266.
/10.3390/electronics10111266
Article
End-to-EndDeepNeuralNetworkArchitecturesforSpeedandSteeringWheelAnglePredictioninAutonomousDriving
PedroJ.Navarro1,*,LeanneMiller1,FranciscaRosique1,CarlosFernindez-Isla1andAlbertoGila-Navarro2
checkfor
updates
Citation:Navarro,P.J.;Miller,L.;Rosique,F.;Fernández-Isla,C.;Gila-Navarro,A.End-to-EndDeep
NeuralNetworkArchitecturesfor
SpeedandSteeringWheelAnglePredictioninAutonomousDriving.Electronics2021,10,1266.
https://
/10.3390/electronics10111266
AcademicEditors:DongSeogHan,KalyanaC.VeluvoluandTakeoFujii
Received:13April2021
Accepted:18May2021
Published:25May2021Publisher’sNote:MDPIstaysneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaf?l-iations.
Copyright:?2021bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccessarticledistributedunderthetermsand
conditionsoftheCreativeCommons
Attribution(CCBY)license(https
://
/licenses/by/
4.0/).
1
2
*
Divisi6ndeSistemaseIngenieriaElectr6nica(DSIE),CampusMuralladelMar,s/n,UniversidadPolitécnicadeCartagena,30202Cartagena,Spain;ler@upct.es(L.M.);paqui.rosique@upct.es(F.R.);
carlos.fernandez@upct.es(C.F.-I.)
GenéticaMolecular,InstitutodeBiotecnologiaVegetal,Edi?cioI+D+I,PlazadelHospitals/n,UniversidadPolitécnicadeCartagena,30202Cartagena,Spain;alberto.gilan@um.es
Correspondence:pedroj.navarro@upct.es;Tel.:+34-968-32-6546
Abstract:Thecomplexdecision-makingsystemsusedforautonomousvehiclesoradvanceddriver-assistancesystems(ADAS)arebeingreplacedbyend-to-end(e2e)architecturesbasedondeep-neural-networks(DNN).DNNscanlearncomplexdrivingactionsfromdatasetscontainingthousandsofimagesanddataobtainedfromthevehicleperceptionsystem.Thisworkpresentstheclassi?cation,designandimplementationofsixe2earchitecturescapableofgeneratingthedrivingactionsofspeedandsteeringwheelangledirectlyonthevehiclecontrolelements.Theworkdetailsthedesignstagesandoptimizationprocessoftheconvolutionalnetworkstodevelopsixe2earchitectures.Inthemetricanalysisthearchitectureshavebeentestedwithdifferentdatasourcesfromthevehicle,suchasimages,XYZaccelerationsandXYZangularspeeds.Thebestresultswereobtainedwithamixeddatae2earchitecturethatusedfrontimagesfromthevehicleandangularspeedstopredictthespeedandsteeringwheelanglewithameanerrorof1.06%.Anexhaustiveoptimizationprocessoftheconvolutionalblockshasdemonstratedthatitispossibletodesignlightweighte2earchitectureswithhighperformancemoresuitableforthe?nalimplementationinautonomousdriving.
Keywords:autonomousdriving;end-to-endarchitecture;speedandsteeringwheelangleprediction;DNNforregression
1.Introduction
Autonomousdrivingtechnologyhasadvancedgreatlyinrecentyears,butitisstillanongoingchallenge.Traditionally,intelligentdecisionmakingsystemsonboardautonomousvehicleshavebeencharacterizedbytheirenormouscomplexity[
1
]andarecomposedofmultiplesubsystems,includingaperceptionsystem,globalandlocalnavigationsystems,acontrolsystem,asurroundingsinterpretationsystem,etc.,[
2
].Thesesubsystemsarecombinedaimingtocoverthecomplicateddecisionsandtaskswhichthevehiclemustperformwhilstdriving.Toobtaintheobjectivesofthevehicle,thesesubsystemsuseawiderangeoftechniqueswhichinclude:cognitivesystems[
3
],agentsystems[
4
],fuzzysystems[
5
],neuralnetworks[
6
],evolutionaryalgorithms[
7
]orrule-basedmethods[
8
].
Deeplearningtechniquesarebecomingincreasinglypopularandarenowavaluabletoolinawiderangeofindustries,includingtheautomotiveindustry,duetotheirpowerfulimagefeatureextraction.Thesetechniqueshaveallowedtheso-calledend-to-end(e2e)drivingapproachtoappear,simplifyingthetraditionalsubsystemsgreatlyandreducingthetasksofmodelingandcontrolofthevehicle[
9
](Figure
1
).TheappearanceofDNNsmeanthatdecision-makingsystemsonboardautonomousvehiclescanreplacemanyofthesubsystemsmentionedpreviouslywithneuralblocks[
10
].Theseneuralblocks,properlyinterconnectedandtrainedwiththecorrectdataarecapableofobtainingperformancesgreaterthan95%forthepredictionofvehiclecontrolvariables[
11
].Anadvantageofthesemodelsisthattheygenerallyrequirefeweronboardsensorsasthemainsourceof
2of21
Electronics2021,10,1266
informationfedtotheDNNsusuallyconsistsofRGBimagesandkinematicdatafromaninertialmeasurementunit(IMU)[
12
].Thismakesend-to-enddrivingsystemsmoreeasilyaccessiblethanthetraditionalperceptionsubsystemswithsensorssuchasLIDARwhichareverycostly.
Figure1.Traditionaldrivingsystemscomparedtoend-to-enddrivingsystem.
Deeplearningmethodsforautonomousdrivinghavegainedpopularitywithadvance-mentsinhardware,suchasGPUs,andmorereadilyavailabledatasets,bothforend-to-enddrivingtechniques[
13
]andtheuseofdeeplearninginindividualsubsystems[
14
].Therehavebeenavarietyofdifferentapproachesforthedevelopmentofdrivingapplicationsusingendtoendlearningtechniques.Inonestudy,a98%accuracywasobtainedusingconvolutionalneuralnetworks(CNN)togeneratesteeringanglesfromimagesgeneratedbyafrontviewcamera[
15
].Inasimilarwork,asequenceofimagesfromapublicdatasetwasusedasinputtotheCNN,topredictwhetherthevehiclewasaccelerating,deceleratingormaintainingspeedaswellascalculatingthesteeringangle[
16
].
AninterestingapproachdesignedaCNNtodevelopahuman-likeautonomousdrivingsystemwhichaimstoimitatehumanbehaviormeaningthevehiclecanbetteradapttorealroadconditions[
13
].Theauthorsused3DLIDARdataasinputtothemodelandgeneratedsteeringandspeedcommands,andinadrivingsimulationmanagedtodecreaseaccidentswiththeautonomoussystemten-foldcomparedwiththehumandriver.AdrivingsimulatorwasalsousedtotestaCNN-basedclosedloopfeedbacktocontrolthesteeringangleofthevehicle[
17
].TheauthorsdesignedtheirownCNN,DAVE-2SKY,usingtheCaffedeeplearningframeworkandtestedthesysteminalane-keepingsimulation.
Theresultswerepromising,althoughproblemsoccurredifthedistancetothevehicleinfrontbecamelessthan9m.
Variouslongshort-termmemory(LSTM)modelshavealsobeenstudied.Aconvolu-tionalLSTMmodelwithbackpropagationwastrainedtoobtainthesteeringanglefromvideoframesusingtheUdacitydataset[
18
].AnFCN-LSTMarchitecturewasusedtopredictdrivingactionsandmotionfromimagesobtainingalmost85%accuracy.Acon-volutionalLSTMmodelwasalsousedtopredictsteeringanglesfromastreamofimagesfromafrontfacingcamera[
19
],improvingontheresultsfrompreviousworks[
20
].
Anotherapproachconsistsinaddingmoresensors.Inoneworkadatasetwasobtainedusingsurroundviewcamerasinadditiontothetypicalfrontviewcamera[
21
].ThedataobtainedbythecameraswasusedtopredictthespeedandsteeringangleusingexistingpretrainedCNNmodels.Theuseofsurroundviewcamerasimprovedtheresultsobtainedatlowspeeds(<20km/h),butatgreaterspeedstheimprovementwaslesssigni?cant.
Inthiswork,wepresentadetailedstudyimplementingsixend-to-endDNNarchitec-turesforthepredictionofthevehiclespeedandthesteeringwheelangle.Thearchitectureshavebeentrainedandtestedusing78,011imagesfromrealdrivingscenarios,whichwerecapturedbytheCloudIncubatorCar(CIC)autonomousvehicle[
2
].
3of21
Electronics2021,10,1266
2.MaterialsandMethods
DNNend-to-endarchitecturesrequirelargevolumesofdataforthemodelstocon-vergecorrectly.ThedataneededtocreateDNNmodelsforautonomousdrivingorADAScanbeobtainedfromthreedifferenttypesofsources:
1.Adhoctests.Toperformthistypeoftesting,largeresourcesarerequired,intheformofoneormorevehicles,expensiveperceptionsystems(e.g.,LIDAR)andpersonnelcapableoftheinstallation,integrationandcommissioningofsophisticatedsensorsanddatarecordingsystems.Inaddition,thedatamustbepost-processed,andthesynchronizationofthedifferentvehicleinformationsourcesisrequired.
2.Publicdatasets.Therearedatasetsdevelopedbybusinessesanduniversitiesforau-tonomousdrivingwheredataobtainedfromtheperceptionsystemsoftheirvehiclescanbeaccessed[
10
].Someofthesepresentdiversescenarioswithdifferentlightandmeteorologicalconditions[
22
].Table
1
showssomerecentpublicdatasetsincludingnumberofsamples,typesofimagesavailableandtypesofvehiclecontrolactionsstored.
3.Simulators.Giventhecomplexityofconductingrealtests,autonomousdrivingsimulatorshavebecomeoneofthemostwidelyusedalternatives.Thesimulationindustryrangesfromsimulationplatforms,vehicledynamicssimulationandsensorsimulationtoscenariosimulationandevenscenariolibraries.Atpresent,therearemanyoptions,includinggenericsolutionswhichmakeuseofgamesandphysicenginesforsimulation[
23
]androboticssimulators[
16
].Recentlyonthemarketcompaniesthatdevelopsimulationproductsspeci?callydesignedtosatisfytheneedsofautonomousdrivinghaveappeared.SomeofthesecompaniesincludeCognata,CARLA,METAMOTO,etc.
Table1.Publicdatasetsforautonomousdriving.
Ref./Year
Samples
ImageType
LIDAR
RADAR
IMU
ControlActions
UPCT2019
78,000
RGB,Depth
Yes
No
Yes
Steeringwheel,Speed
LyftL5[
24
]/2019
323,000
RGB
Yes
No
Yes
-
nuScenes[
25
]/2019
1,400,000
RGB
Yes
Yes
Yes
-
Pandaset[
22
]/2019
48,000
RGB
Yes
No
Yes
-
Waymo[
23
]/2019
1,000,000
RGB
Yes
No
Yes
-
Udacity[
16
]/2016
34,000
RGB
Yes
No
Yes
Steeringwheel
GAC[
26
]/2019
3,240,000
RGB
No
No
No
Steeringwheel,Speed
Inthisworkadhocdatahasbeenchosen.Toobtainthedata,acustomdatasetwas
created,astheresultofadhocdrivingtestsperformedusingtheCloudIncubatorCarautonomousvehicle(CICar)[
2
](seeFigure
2
),anautonomousvehicleprototypebasedontheadaptionofthecommercialelectricvehicle,RenaultTwizy.Thevehiclehasbeenconvenientlymodi?edandhousesacompleteperceptionsystemconsistingofa2DLIDAR,3DHDLIDAR,ToFcameras,aswellasalocalizationsystemwhichcontainsareal-timekineticunit(RTK)andinertialmeasurementunit(IMU,seeFigure
2
c)andautomationofthedrivingelementsofthevehicle(accelerator,brake,steeringandgearbox).Allofthisiscomplementedwiththebiometricdataofthedriverstakenduringthedrivingtests.
2.1.DrivingTests
Agroupof30driversofdifferentageandgenderwereselectedtoperformthedrivingtests,ofwhich?vewerediscardedduetosynchronizationproblems,recordingfailureorincompletedata.ThedrivingtestswerecarriedoutinCartagenaintheRegionofMurcia,Spain,followingapreviouslyselectedroutewithrealtraf?c.
Thisrouteprovidesasigni?cantsetoftypicalurbandrivingscenarios:(a)junctionswithrightofwayandchangesofpriority;(b)incorporation,internalcirculationandexitingofaroundabout;(c)drivingalongaroadwithandparkingareas;(d)mergingtraf?c
4of21
Electronics2021,10,1266
situations.Inordertocontemplateagreatervarietyofenvironmentalconditions,eachdrivercompletedtheroutetwiceatdifferenttimesofday(morning,afternoonorevening).InFigure
3
asampleofsomeofthedatasetimagesisshown,wheresomeofthedifferentdrivingconditionscapturedduringthetestscanbeobserved.
Figure2.(a)CloudIncubatorCarautonomousvehicle(CiCar).(b)CiCarondataacquisitionmission.(c)Vehiclemodel
andIMUsensormeasurementdetails.
Figure3.Imagesfromdataset.(a)pedestriancrossing;(b)saturationoftheilluminationonroundabout;(c)carbraking;
(d)complexshadowsontheroad.
2.2.VehicleCon?guration
Asmentionedpreviously,thedatawascollectedusingtheCICarprototypevehicleinmanualmode,drivenbyahumandriver.InTable
2
thevariablesanddataacquiredduringthedrivingtestsareshown,aswellastheinformationaboutthedevicesandsystemsusedtoobtainthedata.
Eachsensorworkswithitsownsamplerate,andinmostcasesthisisdifferentbetweendevices.Toachievethecorrectdatasynchronizationandreconstructthetemporalsequencewithprecision,stampingtimeshavebeengeneratedforeachsensorandthesehavebeensynchronizedatthestartandendoftherecording.Therefore,allthedevicesarecontrolledbythecontrolunitonboardthevehicle,providingaperfecttemporalandspatialsynchronizationofthedataobtainedbythedifferentsensors.Thedatafromeachtestisdownloadedandstoredinthecentralserveroncethedrivehas?nished.
5of21
Electronics2021,10,1266
Table2.CICar.Sensordata.
Variable/Unit
Device/System
Frequency
Vehicleposition/(LLA)acceleration/(m/s2)
1
GNSS-IMU
4Hz
20Hz
angularspeed/(。/s)
20Hz
Steeringwheelangle/(。)
50Hz
Distance/(m)
compactRioControlunit
50Hz
Speed/(m/s)
50Hz
Frontalimage/
RGBDCamera
25fps
Driverattentionimage
RGBCamera
25fps
SurroundingsCloudPoints
LIDARs,ToFcameras
10Hz
1LLA—latitude,longitude,andaltitude.
2.3.DeepLearningEnd-to-EndArchitecturesClassi?cation
End-to-end(e2e)systemsbasedonDNNarchitecturesappliedtoautonomousdrivingcanmodelthecomplexrelationshipsextractedfromtheinformationobtainedfromthevehicleperceptionsystem.Thisisachievedusingdifferenttypesofneuralblocksgroupedintolayers(e.g.,convolutionallayers,fully-connectedlayers,recurrentlayers,etc.),withtheaimofgeneratingdirectcontrolactionsonthesteeringwheel,theacceleratorandthebrake.Theseactionsonthevehiclecontrolelementscanbecategorical,e.g.,increaseordecreasethespeed,ortheycangenerateasetpointonthecontroller,e.g.,turn13.6degreesorreach45km/h.
Themachinelearningalgorithmsthatareusedtomodeldrivingactionsbelongtothesetknownassupervisedlearning.Thesealgorithmsacquireknowledgefromadatasetofsamplespreviouslyacquiredduringdrivingtestswithapreviouslyconditionedvehicle[
2
]orfromdrivingsimulators[
27
].Thesedatasetsincludedatafromtheperceptionsystem,suchas:images(RGBoIR),LIDAR,RADAR,IMU,aswellastheactionsperformedbythedriveronthevehiclecontrolelements,suchasthesteeringwheel,theacceleratorandthebrake.
Thegenerationofdiscretevariablesbyamachinelearningalgorithmisknownasregressionandisawidelystudiedproblem[
28
].RegressionmodelsforDNNusethegradientdescentfunctiontosearchfortheoptimalweightsthatminimizethelossfunction.Thelossfunctionsusedforthesemodelsdifferfromthoseusedintheclassi?cationmodels,withthemostusedbeingthemeanabsoluteerror,meansquareabsoluteerrorormeanabsolutepercentageerror,amongothers.
Thisworkproposesaclassi?cationofe2earchitecturesbasedonthetypeofdatareceivedbytheDNNfromthevehicleperceptionsystem.Thisisdonebyconsideringtheimageprovidedbythevisualperceptionsystemofthevehicleasthemaindatasourceforthee2earchitecture.Basedonthetypeofnetworkinput,thearchitectureshavebeenclassi?edintothreetypes:(1)singledatae2earchitecture(SiD-e2e),(2)mixeddatae2earchitecture(MiD-e2e)andsequentialdatae2earchitecture(SeD-e2e).
2.3.1.SiD-e2eArchitecture
Thistypeofarchitectureusesasingledatasourcefortheinputlayertogeneratethesetpointsdirectlyforthecontrolelementsofthevehicle.TheSiDarchitecturesusethevisualinformationprovidedbyoneormorecameraslocatedonthefrontandperipheryofthevehicletocomposeasingleimageofthevehicles?eldofviewofthevehicleasavisualinputtothenetwork[
15
,
29
,
30
].BeforebeingprocessedbytheDNN,theimagesarereducedinsizeandnormalized.Subsequently,theimagesgothroughconvolutionallayersofdifferentkernelsize(kok)anddepth(d)whichallowtheimagefeaturesthatminimizethecostfunctiontobeextractedautomaticallyinsuccessivelayers.Aftertheconvolutionallayers,theresultingvectoristransformedintoonedimension(Flayer)andconnectedtoasetoffully-connectedlayers(FC)whichhavethedecision-makingcapacity.Lastly,theFClayersendinthenumberofneuronsequaltothenumberofvariablestobe
6of21
Electronics2021,10,1266
predicted[
15
,
28
].Figure
4
showsanexampleoftheSiDarchitecturewherethenormalizedimagefeedsagroupofconvolutionallayerswithdifferentkernelsizes,followedbyasetoffully-connectedlayersanda?naloutputlayer.
Figure4.Singledatae2earchitecture(SiD).
Thenumberofconvolutionallayers,theirsize,paddingandstride,aswellasthenumberofneuronsintheFClayersareadjustedempirically.Theseparametersarede-pendentonthetrainingdatasetandthesizeoftheinputimages.Thereareworkswherethearchitectureshavebeendesignedusingbanksofconvolutional?ltersofincreasingsize[
30
]andthereareotherswherethedesignistheopposite[
31
,
32
].Generallyspeaking,theconvolutionallayerswithasmallkernelsizeextractreducedspatialcharacteristics,suchastraf?csigns,traf?clightsorlaneseparationlines,whilethosewithagreaterkernelsizedetectlargerelementsintheimage,suchasvehicles,pedestriansortheroad[
31
].
2.3.2.MiD-e2eArchitecture
Mixeddataarchitecturesallowdifferentdatasourcesfromthevehicle,suchasRADAR,longitudinalandlateralaccelerations,angularvelocities,mapsorGPStobemergedtogetherwiththevisualinformationfromthevehicle’scameras.TheinclusionofmoreinformationsourcesintheDNNaimsto:(1)improvetheperformanceofthemodel,(2)improvethepredictionofspeci?ccasesorabnormaldriving;and(3)increasethetolerancetofailuresproducedbythedatasources[
21
,
29
,
33
].AsshowninFigure
5
,thistypeofarchitecturecombinestheresultsoftheSiD-e2e,suchasthoseshownintheprevious
Section
2.3.1
,withasetofFClayerswhichallowsthemappingofthecharacteristicsfromothervehicledatasourcesonalayerthatconcatenatesalltheinformation.
Figure
5
showsa?rstinputbranchwheretherelevantinformationisextractedfromtheimagewithasecondbranchthatextractsextrainformation,forexamplefromtheIMUorGPS.Theconcatenationlayerreceivesaspeci?ednumberofinputsfrombothbranchesofthemodel.Thenumberofconnectionsfromeachbranchisusuallydeterminedusingempiricaltechniques.MiDarchitectureishabituallyusedindatafusionintheperceptionsystemsofautonomousvehiclesorADAS.
7of21
Electronics2021,10,1266
Figure5.Mixeddatae2earchitecture(MiD).
2.3.3.SeD-e2eArchitecture
Drivingisataskwherethefutureactionsonthevehicle’scontrolelementsdependgreatlyonthepreviousactions,thereforethepredictionofthecontrolactionscanbemodeledasatimeseriesanalysis[
16
,
26
,
34
].Sequentialdatabasedarchitecturesaimtomodelthetemporalrelationshipsofthedatausingfeedbackneuralunits(seeFigure
6
),thesetypesofneuralnetworksareknownasrecurrentneuralnetworks(RNN)[
34
].BasicRNNscanlearntheshort-termdependenciesofthedatabuttheyhaveproblemswithcapturingthelong-termdependenciesduetovanishinggradientproblems[
35
].Tosolvethevanishinggradientproblems,moresophisticatedRNNarchitectureshaveappearedwhichuseactivationfunctionsbasedongatingunits.Thegatingunithasthecapacityofconditionallydecidingwhatinformationisremembered,forgottenorforpassingthroughtheunit.Thelongshort-termmemory(LSTM)[
36
]andGRU(gatedrecurrentunit)aretwoexamplesofthesekindsofRNNarchitectures[
37
].
Figure6.Sequentialdatae2earchitecture(SeD).
RNN[
15
],LSTM(longshort-termmemory)[
16
]andGRU(gatedrecurrentunit)arethemostusedformodelingthetemporalrelationshipsinthe?eldofe2earchitectures.TheuseofRNNine2earchitecturesrequiresthenetworkinputdatatobetransformedintotemporalsequencesintheformoftimesteps(ts).ThepartitioningoftheNinputsamples
8of21
Electronics2021,10,1266
ofthenetworkwillgenerate(N-ts)temporalsequencesthatwillcorrespondtoanoutputvectorfromthenetworkaccordingtoEquation(1):
S.input=<[I1,..,Its|,[I2,..,Its+1|...,[In-1-ts,..,IN-1|},
output=<ots+1,ots+2,............,oN}
(1)
Figure
7
showstheprocedurestogenerateN-tssequencesofsizetsfromadatasetcomposedofNimagesandNpairsofoutputvalues(v:speed,9:steeringwheelangle).
Figure7.Compositionofsequentialimagesandoutputvaluesdata.
TocreateamodelfromtheSeD-e2earchitectures,thiswillbetrainedwithtemporalsequencesofsizets(I1toIts)andthenextoutputvectortopredict(vts+1,9ts+1)asitisshownintheFigure
7
.
2.4.ParemetersofDeepNeuralNetworkArchitectures
ThenumberofparameterswhichcomeintoplayduringthedesignprocessofaDNNisenormousandwecanseparatethemintothreetypes:
(1)Networkinputparameters.Theseparametersrefertothewaythenetworkinputvaluesarepresented.Fordataintheformofimages,theshapeparametersinclude:
·Normalization.Normalizationmustbeperformedonthedatabeforetrainingthe
DNN.Anadequatenormalizationcanimprovetheconvergenceandperformanceofthenetwork.Equations(2)and(3)showthemostcommontechniques.
Scaled(0,1)=(xi-min)/(max-min)(
2)
Standarized(╱=0,J=1)=(xi-╱)/(J)(
3)
whereminandmax,arethemaximumandminimumvaluespresentinthedatasetX={x1,...,xN},withuandobeingtheaverageandstandarddeviationofthedataset,respectively.Thereareothernormalizationtechniques,forexample,themeancanbesubstitutedforthemodeinEquation(3),forcasesinwhichthedatadistributiondoesnotalignbelowthemean.
·Resizing.Asageneralruleandespeciallyine2earchitecturesforautonomous
driving,theimagesizeisreducedbeforebeingprocessedbythenetwork.Themainreasonforthisistodecreasethenetworkprocessingtimeandtheresourcesinvolvedintheprediction.
·Colorspacetransformations.Itiscommontotransformtheinputimagetoa
colorspaceotherthantheonesuppliedbythecameratoimproveperformance,forexampleHSI,LAB,etc.,[
10
].
·Preprocessing.Whenthedataiscapturedfromdifferentsourcesordataset,these
tendtohavedisparatefeaturesfromthedeviseitselforfromthelightingof
9of21
Electronics2021,10,1266
thescenewheretheimageswerecaptured,thereforehistogramequalizationorimageenhancementalgorithmsareusuallyappliedtonormalizetheappearanceoftheentiredataset.
·Dataaugmentation.Thistechniqueconsistsinincreasingthesizeoftheoriginal
datasetinordertoachievehigherlevelsofgeneralizationandtoimprovetheperformanceofthenetwork[
38
].
(2)Architecturecon?gurationparameters.Theseparametersconstitutethecompositionofonearchitectureoranother,andtheseinclude:
·Typeoflayer.Thearchitecturescanstackdifferentsetsoflayersineachbranch:
FC,Convolutional,RNN,Concatenated,etc.
·Layersettings.Eachlayerhasspeci?ccon?gurations,forexample,convolutional
layerscanbecon?guredwithdifferenttypesof?lters,3o3,5o5,...,kok,theirdepthornumberoflayers.
·Layerdistribution.Thearchitecturescanconsistofasinglebranch,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 船舶泵機租賃合同
- 醫(yī)療創(chuàng)新項目管理流程
- 智能機場智能化施工合同
- 住院期間患者離院管理
- 建筑綠化安全合同協(xié)議書
- 醫(yī)保業(yè)務數據
- 植物園水電設施施工協(xié)議
- 電力工程皮卡租賃協(xié)議
- 醫(yī)療器械招標評分索引表模板
- 神經外科護理觀察典型案例
- 中國加速康復外科臨床實踐指南(2021)解讀
- 會計技能大賽實訓總結與反思
- MOOC 大學英語視聽導學-湖南大學 中國大學慕課答案
- 水利風景區(qū)項目策劃
- 無人機駕駛航空器飛行管理暫行條例(草案)知識考試題庫(85題)
- 政務信息宣傳培訓課件
- 銀行營銷策略市場調研分析
- 2024年房地產公司設計類技術筆試歷年真題薈萃含答案
- 霧化吸入依從性品管圈課件
- 生活場景下信息檢索
- 【城市社區(qū)韌性治理探究文獻綜述4800字】
評論
0/150
提交評論