![本科畢業(yè)論文-1600鎂合金帶材精整機(jī)組-分條圓盤(pán)剪設(shè)計(jì)_第1頁(yè)](http://file4.renrendoc.com/view/23e1ee7f6e44235922720504bc552eb9/23e1ee7f6e44235922720504bc552eb91.gif)
![本科畢業(yè)論文-1600鎂合金帶材精整機(jī)組-分條圓盤(pán)剪設(shè)計(jì)_第2頁(yè)](http://file4.renrendoc.com/view/23e1ee7f6e44235922720504bc552eb9/23e1ee7f6e44235922720504bc552eb92.gif)
![本科畢業(yè)論文-1600鎂合金帶材精整機(jī)組-分條圓盤(pán)剪設(shè)計(jì)_第3頁(yè)](http://file4.renrendoc.com/view/23e1ee7f6e44235922720504bc552eb9/23e1ee7f6e44235922720504bc552eb93.gif)
![本科畢業(yè)論文-1600鎂合金帶材精整機(jī)組-分條圓盤(pán)剪設(shè)計(jì)_第4頁(yè)](http://file4.renrendoc.com/view/23e1ee7f6e44235922720504bc552eb9/23e1ee7f6e44235922720504bc552eb94.gif)
![本科畢業(yè)論文-1600鎂合金帶材精整機(jī)組-分條圓盤(pán)剪設(shè)計(jì)_第5頁(yè)](http://file4.renrendoc.com/view/23e1ee7f6e44235922720504bc552eb9/23e1ee7f6e44235922720504bc552eb95.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1600鎂合金帶材精整機(jī)組-分條圓盤(pán)剪機(jī)架設(shè)計(jì))式中——聯(lián)軸器的許用轉(zhuǎn)矩/;T——聯(lián)軸器長(zhǎng)期承受的理論轉(zhuǎn)矩/;——聯(lián)軸器工作條件系數(shù)。所以:7.4齒輪機(jī)座的作用及類(lèi)型為了將電動(dòng)機(jī)或減速器的扭矩分配給每個(gè)刀盤(pán)軸,除電動(dòng)機(jī)單獨(dú)傳動(dòng)每個(gè)刀盤(pán)軸的情況外,大多數(shù)分條圓盤(pán)剪的主傳動(dòng)系統(tǒng)中都設(shè)有齒輪機(jī)座。因?yàn)辇X輪機(jī)座傳遞的扭矩較大,而中心距又受到刀盤(pán)軸中心距的限制,為了滿足強(qiáng)度要求,齒輪的模數(shù)較大(8~45),齒寬較寬(齒寬系數(shù)為1.6~2.4),而齒數(shù)較少,通常為22~44。齒輪機(jī)座的箱體有高立柱式、矮立柱式和水平剖分式三種形式。齒輪機(jī)座通常直接安裝在基礎(chǔ)上,安裝方式有兩種,一種是將整個(gè)底座都安放在基礎(chǔ)上,另一種是由地腳安裝在基礎(chǔ)上。7.5齒輪機(jī)座的結(jié)構(gòu)齒輪機(jī)座由齒輪軸、軸承及軸承座和機(jī)蓋等主要部件組成。由于傳遞的扭矩大,因此傳動(dòng)軸的直徑很大,相比之下,齒輪的直徑很小,所以一般與傳動(dòng)軸作成一體,即齒輪軸。齒輪多做成具有漸開(kāi)線齒形的人字齒,這樣,只能將一根軸的一端在軸向予以固定,而另外一根齒輪必須設(shè)計(jì)成軸向游動(dòng)的,在運(yùn)轉(zhuǎn)過(guò)程中依靠人字齒的嚙合自動(dòng)定位,從而避免載荷在兩側(cè)斜齒上的不均勻分布。另外,在溫度發(fā)生變化時(shí),相嚙合的齒輪軸均可自由伸縮,保證正常嚙合。在齒輪機(jī)座中采用雙圓弧齒輪軸,可提高齒輪軸的使用壽命和承載能力,使齒輪軸的外形尺寸減小。齒輪軸的材料為45、40Cr、32Cr2MnMo、35SiMn2MoV、40CrMn2MoV等。由于分條圓盤(pán)剪齒輪箱齒輪軸的齒面接觸應(yīng)力很高,應(yīng)采用硬齒面,齒面淬火硬度為HB480~570。齒輪機(jī)座的軸承主要采用滾動(dòng)軸承,齒輪機(jī)座箱體應(yīng)保證齒輪傳動(dòng)具有良好的密封性,并具有足夠的剛性,以使軸承具有堅(jiān)固的支撐,為此,應(yīng)盡可能加強(qiáng)箱體軸承處的強(qiáng)度和剛度。由于齒輪箱大多是單件或少量生產(chǎn),為了降低成本,機(jī)座的箱體采用鍛焊結(jié)構(gòu)或鑄焊結(jié)構(gòu)。
8系統(tǒng)的潤(rùn)滑8.1潤(rùn)滑劑的作用機(jī)械零件的表面在接觸的時(shí)候產(chǎn)生相對(duì)運(yùn)動(dòng),在此過(guò)程中,避免不了會(huì)產(chǎn)生摩擦。假如潤(rùn)滑不當(dāng),效率會(huì)下降,并且引起發(fā)熱、振動(dòng)、噪聲等。由于零件磨損,機(jī)械精度下降,壽命降低,影響了正常工作而發(fā)生早期報(bào)廢。因此,在機(jī)械設(shè)計(jì)中,潤(rùn)滑是一個(gè)很重要的問(wèn)題。在機(jī)械的摩擦副中加潤(rùn)滑劑的主要作用是:減小摩擦因數(shù),提高機(jī)械效率。減輕磨損,延長(zhǎng)機(jī)械使用壽命。液體潤(rùn)滑劑能帶走摩擦所產(chǎn)生的熱量,使零件的表面工作溫度下降。循環(huán)潤(rùn)滑能起排污作用。點(diǎn)、線接觸的摩擦表面,油膜能起到緩沖吸振的作用,能夠?qū)⑤d荷分布到較大的面積上,使最大應(yīng)力下降。緩蝕、密封。8.2潤(rùn)滑方式的選擇8.2.1軸承的潤(rùn)滑滾動(dòng)軸承潤(rùn)滑的作用是降低摩擦阻力、減少磨損、防止銹蝕,同時(shí)還可以起到散熱、減小接觸應(yīng)力、吸收振動(dòng)等作用??紤]軸承潤(rùn)滑時(shí),選用脂潤(rùn)滑方式,潤(rùn)滑膜強(qiáng)度高,能承受較大的載荷,不易流失,容易密封,能防止灰塵等雜物侵入軸承內(nèi)部,對(duì)密封要求不高,一次加脂可以維持相當(dāng)長(zhǎng)的一段時(shí)間。其缺點(diǎn)是:摩擦損失大,散熱效果差。對(duì)于那些不便經(jīng)常添加潤(rùn)滑劑的部位,或不允許潤(rùn)滑油流失而導(dǎo)致污染產(chǎn)品的工業(yè)機(jī)械來(lái)說(shuō),這種潤(rùn)滑方式十分適宜。潤(rùn)滑脂的填充量要適中,一般為軸承內(nèi)部空間容積的。8.2.2齒輪傳動(dòng)的潤(rùn)滑齒輪在傳動(dòng)時(shí),相嚙合的齒面間有相對(duì)滑動(dòng),因此就要發(fā)生沖突和磨損,添加動(dòng)力消耗,降低傳動(dòng)效率。特別是高速傳動(dòng),就更要做好齒輪的潤(rùn)滑。齒輪嚙合面之間需要加入潤(rùn)滑劑,能夠防止金屬直接碰觸,減小摩擦損耗,還能夠散熱及防銹蝕。因而,對(duì)齒輪傳動(dòng)系統(tǒng)進(jìn)行必要的潤(rùn)滑,能夠大大改善輪齒的工況,確保運(yùn)轉(zhuǎn)正常及預(yù)期的壽命。通用閉式齒輪傳動(dòng),其潤(rùn)滑方法依據(jù)齒輪圓周速度大小決定。當(dāng)齒輪的圓周速度時(shí),通常是將大齒輪輪齒浸入油池中進(jìn)行浸油潤(rùn)滑。這樣,齒輪傳動(dòng)時(shí),就把潤(rùn)滑油帶到嚙合的齒面上,也能將油甩到箱壁上,借以散熱。齒輪浸入油中的深度可視齒輪圓周速度大小決定,對(duì)圓柱齒輪一般不宜超過(guò)一個(gè)齒高,但一般不該小于10mm。8.2.3滑塊式萬(wàn)向接軸的潤(rùn)滑由于滑塊式萬(wàn)向接軸的摩擦表面不能很好地密封,潤(rùn)滑油不能很好地保存在摩擦面上。同時(shí)分條圓盤(pán)剪的運(yùn)行特點(diǎn)和萬(wàn)向接軸所處的位置,使其潤(rùn)滑較為困難,造成滑塊的磨損加快,壽命降低,嚴(yán)重影響分條圓盤(pán)剪的作業(yè)率。目前潤(rùn)滑方式主要是人工定期加注潤(rùn)滑油和采用自動(dòng)潤(rùn)滑油裝置兩種。另外,采用密封油包包覆和內(nèi)存潤(rùn)滑劑的方式也可以較好地解決潤(rùn)滑問(wèn)題。潤(rùn)滑劑可用潤(rùn)滑脂或潤(rùn)滑油。8.2.4齒輪機(jī)座的潤(rùn)滑分條圓盤(pán)剪的齒輪機(jī)座連續(xù)運(yùn)轉(zhuǎn)時(shí)間很長(zhǎng),因此機(jī)座的冷卻與潤(rùn)滑是很重要的。對(duì)于齒輪,采用兩種方式,一種是用側(cè)向噴嘴直接向齒輪嚙合區(qū)噴射潤(rùn)滑油;另一種是用一排位于上齒輪軸上部的噴油嘴,通過(guò)側(cè)擋板向齒輪嚙合區(qū)注油。齒輪箱的軸承通常與齒輪使用同一潤(rùn)滑系統(tǒng),在齒輪箱體上應(yīng)有潤(rùn)滑軸承的油溝。
結(jié)論經(jīng)過(guò)一個(gè)學(xué)期的學(xué)習(xí)、分析、設(shè)計(jì),在老師的耐心指導(dǎo)和同學(xué)們的熱情幫助下,我最終完成了1600鎂合金帶材精整機(jī)組-分條圓盤(pán)剪機(jī)架設(shè)計(jì)。分條圓盤(pán)式剪切機(jī)主要功能是對(duì)已經(jīng)軋制過(guò)的AZ31鎂合金板進(jìn)行分條。我設(shè)計(jì)的這臺(tái)分條圓盤(pán)式剪切機(jī)主要是對(duì)于刀盤(pán)軸的設(shè)計(jì)校核、軸承的選擇校核、電動(dòng)機(jī)的核算選擇校核、傳動(dòng)裝置中主要的萬(wàn)向連接軸和齒輪的計(jì)算校核,部分鍵的計(jì)算,以及對(duì)潤(rùn)滑系統(tǒng)進(jìn)行了分析。在設(shè)計(jì)和核算過(guò)程中涉及、運(yùn)用了許多基礎(chǔ)及專(zhuān)業(yè)知識(shí),如:軋鋼機(jī)械設(shè)計(jì)、機(jī)械制造、機(jī)械原理、材料力學(xué),理論力學(xué)、金屬工藝學(xué)等。對(duì)這些知識(shí)的應(yīng)用使我大大加強(qiáng)了本專(zhuān)業(yè)知識(shí)功底。由于我的水平有限,設(shè)計(jì)中不可避免存在一些不足,在核算、設(shè)計(jì)及繪圖過(guò)程中不可避免地出現(xiàn)錯(cuò)誤,請(qǐng)各位老師給予批評(píng)指正。
參考文獻(xiàn)[1]李忠盛,潘復(fù)生,張靜.AZ31鎂合金的研究現(xiàn)狀和發(fā)展前景[J].金屬成形工藝,2004,22(1):54-57.[2]萇群峰,李大永,彭穎紅,等.AZ31鎂合金板材溫?zé)釠_壓數(shù)值模擬與實(shí)驗(yàn)研究[J].中國(guó)有色金屬學(xué)報(bào),2006,16(4):580-585.[3]黃佳.金屬帶材圓盤(pán)分切斷面分析及分切過(guò)程數(shù)值模擬仿真[D].廣東:廣東工業(yè)大學(xué),2012.[4]熊雪英,王玉明,傅東旭,等.金屬材料縱切分條加工排刀程序開(kāi)發(fā)應(yīng)用[C].上海:2001.[5]許體武.圓盤(pán)剪剪切過(guò)程數(shù)值模擬及工藝優(yōu)化[D].馬鞍山:安徽工業(yè)大學(xué),2013.[6]賈海亮.圓盤(pán)剪剪切過(guò)程的有限元模擬和實(shí)驗(yàn)研究[D].太原:太原科技大學(xué),2010.[7]尋鑫,蔣新華,許思猛.基于S7-200的高精度縱剪分條機(jī)控制系統(tǒng)的設(shè)計(jì)[J].機(jī)電技術(shù),2013,5(4):2-4.[8]張蒙.圓盤(pán)剪力能參數(shù)的計(jì)算方法與選擇[J].冶金設(shè)備,2010(Z1):1-13.[9]孔繁華,楊大中,楊富偉.切邊圓盤(pán)剪的力能參數(shù)計(jì)算[J].一重技術(shù),1999,4:15-24.[10]潘嘉強(qiáng),路家斌,閻秋生.圓盤(pán)剪分切工藝有限元仿真研究[J].機(jī)電工程技術(shù),2012,41(10):117-122.[11]張弘,羅愷.圓盤(pán)剪切機(jī)電機(jī)的選擇計(jì)算[J].科技創(chuàng)新導(dǎo)報(bào),2015(7):242-244.[12]張金蘭,夏長(zhǎng)發(fā).中小型電機(jī)選型手冊(cè)[M].北京:機(jī)械工業(yè)出版社,1998.[13]滾動(dòng)軸承圓錐滾子軸承型號(hào)查詢目錄[S].[14]唐增寶,常建娥.機(jī)械設(shè)計(jì)課程設(shè)計(jì)(第4版)[M].武漢:華中科技大學(xué)出版社,2011.[15]陸鳳儀,鐘守炎.機(jī)械設(shè)計(jì)[M].北京:機(jī)械工業(yè)出版社,2010.[16]黃慶學(xué).軋鋼機(jī)械設(shè)計(jì)[M].北京:冶金工業(yè)出版社,2007.[17]HL型彈性柱銷(xiāo)聯(lián)軸器基本參數(shù)和主要尺寸(GBT5014-85)[S].[18]Maastricht-Eindhoven,Maastricht.Therotatingdiscasadevicetostudytheadhesivepropertiesofendothelialcellsunderdifferentialshearstresses[J].journalofmateriaisscience,1994,361-367.[19]V.P.Sankevich.rotarydiskshearswithmechanized[E].186-187.[20]A.P.Koshka.Increasingtheproductivityofstripslittingdiskshears420[J].NovosibirskMetallurgicalWorks,577-580.[21]E.Ya.Filatov,V.E.Pavlovskii,V.N.Belokurov,etal.Machineforfatiguetestingofspecimensandpartswithvariationofthebendingmoment,torque,andshearingforce[M].409-414[22]YasumasaChino,T.Furuta,M.Hakamada,etal.FatiguebehaviorofAZ31magnesiumalloyproducedbysolid-staterecycling[J].jmatersci,2006,317:3229-3232
外文翻譯Chapter5Edgecracking5.1OverviewofcrackingstudiesEdgecrackingoftenresultsinedgetrimmingtoremovethedamagedmaterialorcancausetheworkpiecetobreakupintherollgap.Insomecasesthequantityofscraphasbeenquotedas6%ormoreforcertainaluminummagnesiumalloys(45).Creatingthesecracksrequiresbothinadequateductilityandsecondarytensilestressontheedge(15).Obviouslyjustliketheneedtopredicttheresultofrolling,edgecrackinghassolicitedresearchtobetterunderstandtheconceptsandcausesassociatedwiththisdefect.Becauserollingisanindustrialprocess,theconcernofexperimentsisinmakingsurethatresultstranslatefromthelabbacktothefactoryfloor.Thisisacomplicatedprocess,especiallyforhotrolling,becauseindustrialmillsaremuchlargerthanthosetypicallyusedforlaboratoryexperiments.Whilegrossgeometryiseasilyscalable,themetallurgicalparametersincludingmicro-structuralandthermalvariablesarenot.Forexample,laboratoryrollingmillsareusuallymuchsmallerthantheonesusedinindustry,thereforetheworkpiecesaresmaller,thiscausesissuesbecausethethermalmassesofthetwodiffer.Thereforetheheatdistributiondiffersbetweenthetwocaseswhichgreatlyeffectsflowstress.ThisproblemhasbeenaddressedbyBurmanbyreheatingthespecimensafteratemperaturedropofmorethan40°Cbelowthatofthefirstrollingpass(46).Accuratelymodelingrollinginthelabhascreatedsomeuniquetestingmethods;forexample,inordertoaccuratelymodelforwardslipconditionsusedincoldrollinganupsettingrollingtestisused.Thishasbeenusedtostudytheeffectofchangingtheforwardslipconditionandcontactconditionseasily.Inthistest,thematerialisdrawnthroughthedeviceusingatensiletestmachine.Thisdeviceonlyreproducescontactconditionsononlyonesideofthestrip(47).Indifferentexperiments,toestimatethecreationoftensilestressesinrolling(whichisrelatedtocrackpropagation),oftentimesagridwouldbeetchedontoamaterialsampleeitheronthesideorbetweentwopiecesofmaterialwhichthenarerivetedtogether.Thesetestpiecesarethenrolled.Afterrolling,thestreamlinedataiscollectedbymeasuringgridchanges.Modelingisthenemployedtoback-trackoutthestresses(46).Instudyingmaterialfactors,oftentimesdifferentmethodsareusedtorevealthemicrostructureofthematerialincluding:opticalmicroscopy,TEM,andx-raydiffraction(48).Thesenotonlyattempttolookatlocationsandmaterialinclusionsthattendtocausecrackingbutattempttotracktheevolutionofthemicrostructureinthesematerials.Tostudyedgecrackingcreatingaccuratefiniteelementmodelshavebecomenecessaryasexperimentsareexpensiveanddifficulttorelatebacktoindustrialconditions.ThemaindebateinusingthismethodisthedamagemodelasdiscussedinChapter4.Perhapsthesimplestmethodattemptedtomodelcrackingisusingstressintensityfactors(49).Thestressintensityfactor(SIF)helpscharacterizesthecracktipandisusedcommonlyinfracturestudies.Thedeterminationofthisfactorisdependentonthesizeofthecrack,geometryofthecrackandpart,theappliedload,andboundaryconditions.Thefactoriscalculatedthencomparedtofracturetoughnessinformation.WhileXieet.al.study,asdescribedhere,providessomeinsightsintoedgecracking,caremustbetaken.TheSIFismainlyvalidforlinearelasticmaterialsandprocesses;inthecaseofrollingdeformationplasticityisinherenttotheprocess(41).Inaddition,SIFanalysisdoesnottakeintoaccountcrackcreationbutonlydealswithcrackpropagation.WhileXie’sstudycouldbeusedtodescribeacoldrollingsituationwithalightpasses,whichmaylimitthezoneofplasticity,thevalidityofthismethodwithhotrollingwouldnotbeappropriate(49).Morerelevanttothedamagemethodusedhere,manyauthorscreateafracturecriterionandsimplydeleteelementswhenthiscriterionismet.Manyfracturecriteriahavebeenproposed;somearebasedoncriticalstrain,criticalstress,orplasticwork(50).OneexampleofthisistheworkofOhandKobayashi(51)wheretheyusetheprincipaltensilestrainsandprincipalcompressivestrain.Theconstantsintheseformulationsaredeterminedbyexperiment.Anexampleisgivenbelow: (5.1)Thiscriteriavalidityislimitedtomaterialinquestion,AA7075-T6andonlyforrollingcases.Themostcomplicateddamagemodel,usedinfiniteelementanalysis,utilizestheideaofvoidvolumefraction.Sinceductilecrackingisbasedontheinitiation,growth,andthenlinkingofvoids,thisisamorephysicalbasedanalysis.Inthistypeofstudythevoidvolumefractionisallowedtoincreaseanddecreaseuntilitreachesacriticalvalueinwhichthematerialfractures.InastudybyRiedeletal.(50)theyattemptedtomodeledgecrackingthiswayusingtheGologanumodel,whichisbasedonthemorecommonlyusedGursonmodel.Theusesofeitherofthesemodelsareproblematicduetomodelcomplexityandadifficulttodeterminesetofmaterialproperties.But,sincethemodelisbelievedtobeclosertothephysicsofthesituationitismorelikelytobevalidoverdifferentstressstates.Thesetypesofmodelsalsoshowtheevolutionofdamagethroughoutthemodel.Therearetwointerestingthingstonoteaboutthisstudy:sincetheyweretryingtorecreatethe45°fracturepatternthatisinherenttoedgecracking1)theyhadpreviouslyusedafracturecriteriontorecreatethepatternand2)theGursonmodelwasunabletocreatethispattern.OnlywhentheyusedtheGologanumodelwhichassumesellipticalvoidshapes(insteadofsphericalones)weretheyabletorecreatethecrackingcondition.5.2Causesofcracking5.2.1MaterialPropertiesAsmentionedatthebeginningofthischapter,oneoftherequiredconditionsforedgecrackingisinsufficientductility.Therefore,studiesofedgecrackinginrollingoftenmeasuredifferentmaterialpropertiesandmicrostructuresandhowthoseparametersaffectductility.Ductilityisinfluencedbytemperature,grainsize,preferredorientationofthematerial,andcompositionofthematerial(1).Thisisespeciallytruewithsecondphaseinclusionswhichshape,size,andstrengthcanbeinitiationpointsforedgecracking(15).Additionallyinhotductility:temperature,strainrate,composition,andpreviousthermalandmechanicaltreatmentsarealsomajorfactorsaffectingductility(48).Themechanismsofcrackgrowthandthereforeductilityinalloysdifferintensiletesttothatofrolling.Sowhenlookingatmaterialsandtheirtensileresponse,somereviewmustbedoneonhowitvaryingcompositionandmicrostructureactuallyeffectspecificaspectsoftheductilecrackprocess.Forexample,inreviewingAl-4.5Cu-3.4Femetalmatrixcomposites,amaterialwhichcontainsrandomlyoriented“needles”ofanintermetalliccompound,thetensiletestindicatesthatthecrackingofparticlescontrolstheductility,butforrolledsamplesvoidnucleation,growthandlinkagecontroltheductility(52).Atomiccrystallinestructurecanplayapartofcrackinglikelihood.Forexample,inlookingatamagnesiumalloyswhichhasahexagonalclosepackedstructuretheratiooflatticeparameters(c/a)effectsprobabilityofcracking;asthisratiocontrolsthelikelihoodofdifferentslipsystemsbeingactivated.Inthesematerials,itwasfoundthatgrainsizehadaweakercorrelationtocrackingthanthelatticeparameterratio.Thiswascausedbytheinterplayofthesetwolatticeparametersandtheirabilitytolimitandorinduceslippingandtwinning.Inaddition,whenthesematerialstwinnedthecrackingresistancevariedonthetypeoftwinform,makingthiscrackingcasemorecomplicated(53).Theexistenceofinclusionsisnotenoughtodetermineductility,butthecompositionsoftheinclusionsmatters.Forexample,inmachiningsteelsthatcontainingnon-metallicinclusionstoimprovemachinabilitysuchasMnSormetallicinclusionssuchasPb,Bi,andSn,theneedtobalancetheeffectsofinclusioninterfaces,whichbothdecreasestheforcerequiredformachiningandincreasesthelikelihoodofcrackingbyinitiatingvoids,isdifficult.ThisstudywasconductedbycomparinginclusionsformedbyPdandBi,inordertoreducePd-S(lead)use,becauseofthehumanandenvironmentalharmthatitcauses.ItwasfoundthatBi-Ssteelsweremoredifficulttorollcomparedtotheleadbasedones.Apparently,thelowmeltingtemperatureandthepoordeformationofBiwiththematrixacceleratestheformationofcracks;soMnisthoughttobeabettersolutiontotheproblem(54).Otherexamplesofmaterialstudiesincludestudyingcompositionsofausteniticstainlesssteelsafterhotrolling.Thesestudiescontainededgecracksofdifferentsizeandfrequency.Thesecracksweresensitivetothecontentandamountofthedeltaferrite.Itisbelievedthatdeltaferriteslowsthemigrationofaustenitegrainboundaryduringsolidificationwhichleadstocorrugatedboundariesresistanttocrackpropagation,becausetheseboundariesactasnucleationsitestoincreaserecrystallizationrates.Thedistributionofthematerialisinhomogeneous,asthehighestferritecontentislocatedinthevicinityoftheplateedge.Thedeltaferritecontentalsoaffectsthedegreeofedgecracksbothinnumberandinsize(48).Contaminationalsocomesintoplayinthecracking.Forexampleinelectricalsheet,oxidationseemstocreatemorecracksofgreaterseverity(55).Oxidationisalsoaffectedbydifferentaddonmaterials.Forexample,theadditionofsulfurcanleadtothedetrimentalformationofoxidesinsteelbillets.OftentimesreducingtheimpactofoxidationrequiresacertainanamountofMntobeaddedtofree-machiningsteels.Theoxideincreasestheprobabilityofcrackformationbycreatingstressconcentrationpoints(54).Hydrogenembrittlementcanalsocausecrackingissuesindifferentmaterials.InAl-Mgalloystheadditionsofsodiummaketheedgespronetocrackingastheadditionofsodiumisknowntoincreasetheamountofhydrogendissolvedinthematerial.Whilethemechanismofhydrogenembrittlementisunknownforaluminum,crackingnucleationisincreasedbyanincreaseinporosityduetohydrogenandotherdissolvedgasses(46).Notallmaterialcontaminationincreasestheprobabilityofedgecrackinginrolling.Inastudyofhotrollingofalloy5182,sodiumandcalciumcontaminationwerereviewed.Whiletheadditionofsodiumiswellknowntoinducecrackingasdiscussedabove;theeffectofcalciumisunderdebate.Ascalciumislikelytobepickedupduringcasting,astudymonitoringcalcium’seffectoncrackingwasperformed.Todosospecificamountsofbothcalciumwereaddedtoaperfectlycastmaterial.Thealloywiththeelevatedcalciumleveldidnotcrack.Whenbothcalciumandsodiumareaddedtothealloy,attypicalconcentrations,theresultingmaterialhadfewerandlessseverecracksafterrolling(45).Ultimately,thematerialmicrostructureandcompositionprovidesnosimpleinsightintothelikelihoodofcrackingandeachcomponentmustbereviewedseparatelyforitseffectoncrackformation.Tensiletestsareoftenaplacetostart,butdifferentmethodsoftestinghavebeendevelopedtobetterreplicaterollingconditionsthatexist.Manyofthesemethodstrytoviewfractureconditionsatdifferenttriaxialities(especiallynegativeones).Methodsincludetheconicalsplaytest(56)andtensileandcompressiontestingofuniquegeometriesexploredbyKweon(33)andBoaetal.(43).Rollingofmaterialisaprocessandduringthatprocessmicrostructureandstrengthevolveovertime.Whilematerialcompositionisthefirststeptodeterminewhatthematerialwillbecome,itisnecessarytolookattheentireprocessandreviewtheductilityofthematerialthrougheachstageinmetalsheetandbarcreation.Thefirststepinmostrollingprocessesistheinitialcast;whetherthematerialisinitiallycastintoaningotorasheetusingacontinuouscastingmethod.Thisisthefirstplacetocombateedgecracking;ascontrollingmeltingandcastingtechniquescanproduceaworkpiecefreeofsurfaceandcenterplaneweakeningfeaturesandprovideinitialductilityofthesample(57).Foranexampleofweakeningfeatures,Graset.al.(58)studiedtheevolutionofbleedsincontinuouscaststeels.Bleedsaresmallsectionsofregionspackedwithintermetallicparticles.Theseareformedassmallbucklesinthematrixareformed,whichfillwithahighlyenrichedmetalmixture,andthensolidifiedrapidly.Thiscreatesmaterialpocketsinthematrixthataremuchharderthanthesurroundingmatrix.EvenwiththesehardparticlescrackingisnotcertainasfoundinGrasstudy,astheparticlesmustbehardenoughtocausevoidnucleationinthematrix.Inthecasesofingotforming(asquotedforAl-Mgalloysbutaccurateforothers)controllingingotreheating,passschedule,ingotsideprofile,edgescalping,castingtechnology,andingotdefectsdirectlyaffectrollingastheseeffectthecreationofweakeningfeaturesandductility(45).Solidificationcannotbeignoredinrolling.Oftensegregationbandsareformedontheoutsideofingotswhichgetpropagatedtotheedgesofsheetmetalwhentheyarerolled.InonestudybyThomsonandBurman(59),whichlookedatsolidificationbandsonindustrialingotsinAl-Mgalloys,theysawthreetypesofcracks:smallcracksthatwerecontainedwithinthesegregationband,largecracksthatstartedinthesegregationbandbutmovedintomaterialbulk,andlargecracksthatstartedoutsidetheband.Inthisstudythemajorityofcrackswerethesmallkindthatwherecontainedinthesegregationbandandwhilethesesmallercrackswerenotsufficientfortheformationoflargercracksitwaswherethemajorityofcracksinitiated.Aftercastingandhomogenization,theheatflow,intermediateannealing,scaling,lubrication,andconditionsoftherollingmillalleffectmicrostructureandcrackingdevelopmentasthematerialmovesthroughtheprocessofedgecracking(57).Forexamplewhenlookingatcontinuouscastmaterials,whichoftenhasmoremicro-defectsandpoortextureevolutionwithheavydeformation,Grasetal.noticedthatafter50%reductionthematerialmicrostructurebecameuniformasdeformationcausedthegrainstorotateinthematerial(58).Rollingstepsarenotabadthingwhenproperlychosen;ascracksarealsoknowntohealincontinuousdeformationaswell.Temperaturecontrolcannotbeignoredasitcaneffectandcreatevariationsinthemicrostructureofthematerial.Inonestudyofnon-orientedelectricalsteelsheet,Hanetal.showedgrainsizesdifferedalongthesheetbecauseofthetemperatureeffectsduringprocessing.Theshortercoolingtimecausedelongatedgrainsintheedgeregion;whilethelongercoolingtimeallowedformoredynamicrecrystallizationtooccurandcausedequiaxedgrainsinthecenteroftheplate.Thelargergrains(andlessenedductility)ontheedgescausedcrackingmorereadilyherethaninthecenteroftheplate(55).AnotherexampleisinanAlcompositematerialwhererollingoftenbreaksupparticlesandrefinesthemtoasmallermicrostructurethatbecomesmoreorderedandorientatedalongtherollingdirection,improvingthestrengthandothermechanicalpropertiesofthematerial(52).5.2.2CreationofTensileEdgeStressesEventhoughrollingisoftenmodeledasaplanestrainprocess,anedgeregionexistswithstressesvaryingacrossthewidthoftherolledmaterial.Withoutmodelingthissection,theunevenlateraldeformationwhichleadstoedgecrackingcannotbestudied(30).Inthisregion,lateralflowcreatesagradualdropoftheinterfacepressureclosetotheedges.Herethematerialdoesdeformlongitudinallybutonlybecauseitisattachedtothebulkofthestrip.Inthisareayieldingoccurswithacombinedeffortofbothcompressiveandsecondarytensilestresses(57).Thesestressesoccuronthefreeedgeaftertherollbitewithamaximumatthecentralsymmetryplane.Notonlydothesetensilestressescauseinhomogeneousdeformationthatresultinconcaveandconvexedgeprofileswhichcaninducestrongertensileforces,butthesetensilestressesaretheonlywayforvoidgrowthtooccur(30).Becausetherestofthestripisincompression,damageisusuallyconfinedtotheedgeregion.Thecreationandtheeffectoftheseedgeswillbediscussedingreaterdetailinthenextchapter.OnewaytocombatthesetensileforcesisfromSaxl(60)whorecommendedtheuseofedgerestraintbarswhichhelpsmaintainsquareedgesandcontainslateralflowwhichoccur--whichaccordingtohisexperimentsworkedwell.5.2.3FinalcommentsItisimportanttorememberthatedgecrackingrequiresbothconditions:lackofductilityandsecondarytensilestresses.Bothoftheseconditionsplayapartintheedgecrackingandoftentimesthespecificlimitingfactormaybedifficulttodetermine.Forexample,inthecaseofedgeshearingwhichcreatesaburrontheedgeoftheworkpiecethatmayinduceanincreaseintensilestresses.Itwasfoundthatcomparinganannealedshearedsampletoanascutmaterialinasecondpassofrolling,theannealedsteeldidnotcrackliketheascutversiondid.Therefore,inthiscase,theworkhardeningofthematerialcreatedbytheshearingprocessplayedamuchlargerpartinthecrackingthantheshapechange(61).Thetworequirementsforedgecrackingdiscussedinlengthinthischapterarenotalwaysthereasonsquotedinliterature.Someauthorshavechosen(57)tocitethreereasons.Thethirdislistedastherollingofanon-squareedgeshape.Thisisnotspecificallyincludedinthiswork,mainlybecausetheeffectofthetensilestressesisbothcreatedandincreasedbytheoverhangingmaterialanditisdifficulttodecouplethesetwoeffects.Whenreviewingliteratureonthepreventionofedgecrackingitisimportanttokeepthesetworequirementsinmind,assomerollingparameterssparkmuchdebateastowhethertheyaffectedgecrackingornot.Forinstance,passsequencehasbeendebated.WhileDoddsandBoddington(15)saysitdoesnotaffectcracking;ThomsonandBurmanhassomeevidencethatitdoes(59).Whilethisdebatewillnotbesettledinthispaper,perhapsitisbettertoreviewtheseissueswiththetworequirementsofcrackinginmind.Inthenextchapter,someofthedifferentrollingparametersandconditionswillbereviewedwiththehopeofprovidingsomeexplanationastotheireffectsonrolling.
Chapter6ProcessParametersandtheireffectonrollingWhilesecondarytensilestressesandgeometricaleffectsarequotedasbeinglessertoductilityforcausingedgecracking,thispaperwillfocusonthesesecondaryissueswhicharefairlyeasytotestusingamodelingmethod.Forthemostpart,thesefactorsaremuchlessstudiedthanthematerialductilityfactors.Themajorfactorsstudiedherearetemperatureandspeedeffects(whicharerelatedtoductility),widthtothicknessratios,edgeshape,friction,andasymmetricrolling(whichareallgeometricaleffects).Whilethereareotherparametersthateffectcracking,theywillnotbediscussedormodeledhere,asthislistisagoodstartofmanyfactorsbelievedtocontributetoedgecrackingotherthanstraightductility.Othergeometricalfeaturesnotconsideredherebutbelievedtocontributetoedgecrackingisthedeviationfromaparallelrollgap,whichcanleadtoawidevarietyofrollingdefectsincludingedgecracking(15).Inaddition,changesinforwardslipcanalsoaffectthelikelihoodofcracking(47).Figure12-Typicaltriaxialityanddamagelegendforthefollowingsection.Intheremainingsectionsofthechapter,predictionsofedgecrackingaremadethroughthemodelandthedamageparametersetupinChapter1andChapter4,respectively.Generallyspeakingthreedifferentsetsofdatawillbeprovidedforeachcase:vonMisesstress,triaxiality,anddamage.Inallcases,theparametersaresetupwiththesamerangeofvaluesforeachsetofcontourplots.Forthedamageandtriaxialityvalues,thecontourplotisalwayssettomodelfromzerotoone(seeFigure12)unlessotherwisenoted.Inthecaseoftriaxiality,thelowerlimitiszerobecausethedamageisbelievedtoonlyaccumulatewhentriaxialityisapositivevalue;theupperlimitwaschosenbecause,whileitdidnotcoverallthepeaks,itgaveagooddistributionofthevalues.Whilenotaddressedhere,sometimewastakentolookattriaxialitiesfrom-1/3toone,aswell,becauseofthelikelihoodthatvaluesgiveninthisrangecouldcausecrackingasdiscussedinChapter4.InFigure13oneofthesegraphsispresented.Astruewithmostofthesecasesofrollingintherollbite,triaxialityvariesmostlyfrom-1/3tooneinthisregion.So,thereforeaneffortshouldbetakeninthefuturetoincludeorevaluatetheeffectsofthe1/3tozerotriaxialityrangeinthedamagemodel.Figure13-Triaxialitygraphedfrom-1/3toone.Inaddition,itshouldbenotedthatthetriaxialityconditionontheedgeisquitedifferentwhencomparedtothecenter(seeFigure14).Thefocusontheedgeregionismainlybecausethisregionproducespositivetriaxialityandthereforedamage.Whilethedamageparameterisdiscrete,theinterpolationofvalueswhenplottedusingtheABAQUScodeleadstographedvaluesthatcanbeoutsideandinthemiddleoftherange.Typicallyiftheregionislightblueorgreen,thiscorrespondswithonenodeyieldingineachelement.CentersectionEdgesectionFigure14-Triaxialityfordifferentsectionsoftherollbite.Generally(unlessotherwisenoted),thevonMisesstressscalecorrespondstoFigure15.Typicallythevaluesarenotcriticaltothediscussionasmuchasthechangesbetweenthevalues.Figure15-TypicalvonMisesstressscaleusedinthefollowingsection.
第五章邊緣裂紋5.1開(kāi)裂研究的概述邊緣開(kāi)裂通常以去除材料導(dǎo)致邊緣修整或?qū)е鹿ぜ怏w在輥縫中。在某些情況下,大量廢金屬被引述為6%或更肯定了鋁鎂合金。這些邊緣裂紋的產(chǎn)生需要足夠的延展性和二次拉伸應(yīng)力。顯然,軋制的結(jié)果就需要預(yù)測(cè)。邊緣裂紋的研究,更好的理解這個(gè)缺點(diǎn)的概念和相關(guān)原因。因?yàn)檐堉剖枪I(yè)生產(chǎn)方法,實(shí)驗(yàn)關(guān)注的是確保結(jié)果應(yīng)用到生產(chǎn)車(chē)間。這是一個(gè)復(fù)雜的過(guò)程,特別是對(duì)于熱軋,因?yàn)閺氖鹿I(yè)的工廠通常比做實(shí)驗(yàn)的實(shí)驗(yàn)室更大。雖然,總的幾何形狀易于擴(kuò)展,該冶金參數(shù)包括微觀機(jī)構(gòu)和熱變量都沒(méi)有。例如,實(shí)驗(yàn)室軋機(jī)通常比在工業(yè)中使用的那些小得多,因此工件較小,因?yàn)閮烧叩臒豳|(zhì)不同這會(huì)引起問(wèn)題。因此,熱分配不同的情況下大大影響了流動(dòng)應(yīng)力。在實(shí)驗(yàn)室中準(zhǔn)確地模擬軋制,創(chuàng)造了一些獨(dú)特的測(cè)試方法。例如:為了準(zhǔn)確地模擬前滑條件,使用冷軋?jiān)囼?yàn)。這已被用來(lái)容易地研究影響改變前滑條件和接觸條件。在該實(shí)驗(yàn)中,材料通過(guò)使用拉伸試驗(yàn)機(jī)設(shè)備拉出。此裝置僅再現(xiàn)了帶材一側(cè)的接觸條件。在不同試驗(yàn)中,在軋制過(guò)程中對(duì)拉伸應(yīng)力的估計(jì)(與其裂紋擴(kuò)展有關(guān))。通常一個(gè)網(wǎng)格將蝕刻到材料樣品的一側(cè)或兩塊材料然后鉚接在一起。然后,將這些試驗(yàn)片進(jìn)行軋制,軋制后通過(guò)測(cè)量網(wǎng)格變化來(lái)收集數(shù)據(jù)流。建模后采用回歸應(yīng)力。在研究物質(zhì)因素中,通常使用不同的方法來(lái)揭示材料的微觀結(jié)構(gòu)包括:光學(xué)顯微鏡、透射電子顯微鏡、X射線衍射。這些不僅試圖尋找位置和材料的夾
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司轉(zhuǎn)讓股權(quán)合同范本
- 供水搶修承包合同范本
- 業(yè)務(wù)外包服務(wù)合同范例
- 債務(wù)收購(gòu)合同范例
- 農(nóng)村房父子贈(zèng)與合同范例
- 農(nóng)機(jī)具供貨合同范本
- 中國(guó)國(guó)家合同范本
- 2025年度婚禮現(xiàn)場(chǎng)舞臺(tái)搭建與燈光音響租賃服務(wù)合同
- 個(gè)人租賃車(chē)庫(kù)合同范本
- 信息托管合同范本
- 一氧化碳中毒培訓(xùn)
- 初二上冊(cè)好的數(shù)學(xué)試卷
- 廣東省潮州市2024-2025學(xué)年九年級(jí)上學(xué)期期末道德與法治試卷(含答案)
- 突發(fā)公共衛(wèi)生事件衛(wèi)生應(yīng)急
- 部編版2024-2025學(xué)年三年級(jí)上冊(cè)語(yǔ)文期末測(cè)試卷(含答案)
- 門(mén)窗安裝施工安全管理方案
- 2024年安徽省高校分類(lèi)對(duì)口招生考試數(shù)學(xué)試卷真題
- ISO45001管理體系培訓(xùn)課件
- 動(dòng)畫(huà)課件教學(xué)教學(xué)課件
- 小學(xué)生心理健康講座5
- 綿陽(yáng)市高中2022級(jí)(2025屆)高三第一次診斷性考試(一診)數(shù)學(xué)試卷(含答案逐題解析)
評(píng)論
0/150
提交評(píng)論