c語(yǔ)言如何對(duì)海量數(shù)據(jù)進(jìn)行處理_第1頁(yè)
c語(yǔ)言如何對(duì)海量數(shù)據(jù)進(jìn)行處理_第2頁(yè)
c語(yǔ)言如何對(duì)海量數(shù)據(jù)進(jìn)行處理_第3頁(yè)
c語(yǔ)言如何對(duì)海量數(shù)據(jù)進(jìn)行處理_第4頁(yè)
c語(yǔ)言如何對(duì)海量數(shù)據(jù)進(jìn)行處理_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

海量數(shù)據(jù)處理專題1.給定a、b兩個(gè)文件,各存放50億個(gè)url,每個(gè)url各占64字節(jié),內(nèi)存限制是4G,讓你找出a、b文件共同的url?方案1:可以估計(jì)每個(gè)文件的大小為50G×64=320G,遠(yuǎn)遠(yuǎn)大于內(nèi)存限制的4G。所以不可能將其完全加載到內(nèi)存中處理??紤]采取分而治之的方法。s遍歷文件a,對(duì)每個(gè)url求取,然后根據(jù)所取得的值將url分別存儲(chǔ)到1000個(gè)小文件(記為)中。這樣每個(gè)小文件的大約為300M。s遍歷文件b,采取和a相同的方式將url分別存儲(chǔ)到1000各小文件(記為)。這樣處理后,所有可能相同的url都在對(duì)應(yīng)的小文件()中,不對(duì)應(yīng)的小文件不可能有相同的url。然后我們只要求出1000對(duì)小文件中相同的url即可。s求每對(duì)小文件中相同的url時(shí),可以把其中一個(gè)小文件的url存儲(chǔ)到hash_set中。然后遍歷另一個(gè)小文件的每個(gè)url,看其是否在剛才構(gòu)建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。方案2:如果允許有一定的錯(cuò)誤率,可以使用Bloomfilter,4G內(nèi)存大概可以表示340億bit。將其中一個(gè)文件中的url使用Bloomfilter映射為這340億bit,然后挨個(gè)讀取另外一個(gè)文件的url,檢查是否與Bloomfilter,如果是,那么該url應(yīng)該是共同的url(注意會(huì)有一定的錯(cuò)誤率)。ps:個(gè)人認(rèn)為方案1中的估計(jì)是不是有問(wèn)題50億就是5*10的9次方。小于等于5*2的30次方,即5G,2.有10個(gè)文件,每個(gè)文件1G,每個(gè)文件的每一行存放的都是用戶的query,每個(gè)文件的query都可能重復(fù)。要求你按照query的頻度排序。方案1:s順序讀取10個(gè)文件,按照hash(query)%10的結(jié)果將query寫入到另外10個(gè)文件(記為)中。這樣新生成的文件每個(gè)的大小大約也1G(假設(shè)hash函數(shù)是隨機(jī)的)。s找一臺(tái)內(nèi)存在2G左右的機(jī)器,依次對(duì)用hash_map(query,query_count)來(lái)統(tǒng)計(jì)每個(gè)query出現(xiàn)的次數(shù)。利用快速/堆/歸并排序按照出現(xiàn)次數(shù)進(jìn)行排序。將排序好的query和對(duì)應(yīng)的query_cout輸出到文件中。這樣得到了10個(gè)排好序的文件(記為)。s對(duì)這10個(gè)文件進(jìn)行歸并排序(內(nèi)排序與外排序相結(jié)合)。方案2:一般query的總量是有限的,只是重復(fù)的次數(shù)比較多而已,可能對(duì)于所有的query,一次性就可以加入到內(nèi)存了。這樣,我們就可以采用trie樹/hash_map等直接來(lái)統(tǒng)計(jì)每個(gè)query出現(xiàn)的次數(shù),然后按出現(xiàn)次數(shù)做快速/堆/歸并排序就可以了。方案3:與方案1類似,但在做完hash,分成多個(gè)文件后,可以交給多個(gè)文件來(lái)處理,采用分布式的架構(gòu)來(lái)處理(比如MapReduce),最后再進(jìn)行合并。(與1相比就是處理構(gòu)架不同)3.有一個(gè)1G大小的一個(gè)文件,里面每一行是一個(gè)詞,詞的大小不超過(guò)16字節(jié),內(nèi)存限制大小是1M。返回頻數(shù)最高的100個(gè)詞。方案1:順序讀文件中,對(duì)于每個(gè)詞x,取,然后按照該值存到5000個(gè)小文件(記為)中。這樣每個(gè)文件大概是200k左右。如果其中的有的文件超過(guò)了1M大小,還可以按照類似的方法繼續(xù)往下分,知道分解得到的小文件的大小都不超過(guò)1M。對(duì)每個(gè)小文件,統(tǒng)計(jì)每個(gè)文件中出現(xiàn)的詞以及相應(yīng)的頻率(可以采用trie樹/hash_map等),并取出出現(xiàn)頻率最大的100個(gè)詞(可以用含100個(gè)結(jié)點(diǎn)的最小堆),并把100詞及相應(yīng)的頻率存入文件,這樣又得到了5000個(gè)文件。下一步就是把這5000個(gè)文件進(jìn)行歸并(類似與歸并排序)的過(guò)程了。4.海量日志數(shù)據(jù),提取出某日訪問(wèn)百度次數(shù)最多的那個(gè)IP。(利用hash分而治之,然后上歸并,堆)方案1:首先是這一天,并且是訪問(wèn)百度的日志中的IP取出來(lái),逐個(gè)寫入到一個(gè)大文件中。注意到IP是32位的,最多有個(gè)IP。同樣可以采用映射的方法,比如模1000,把整個(gè)大文件映射為1000個(gè)小文件,再找出每個(gè)小文中出現(xiàn)頻率最大的IP(可以采用hash_map進(jìn)行頻率統(tǒng)計(jì),然后再找出頻率最大的幾個(gè))及相應(yīng)的頻率。然后再在這1000個(gè)最大的IP中,找出那個(gè)頻率最大的IP,即為所求。5.在2.5億個(gè)整數(shù)中找出不重復(fù)的整數(shù),內(nèi)存不足以容納這2.5億個(gè)整數(shù)。方案1:采用2-Bitmap(每個(gè)數(shù)分配2bit,00表示不存在,01表示出現(xiàn)一次,10表示多次,11無(wú)意義)進(jìn)行,共需內(nèi)存內(nèi)存,還可以接受。然后掃描這2.5億個(gè)整數(shù),查看Bitmap中相對(duì)應(yīng)位,如果是00變01,01變10,10保持不變。所描完事后,查看bitmap,把對(duì)應(yīng)位是01的整數(shù)輸出即可。方案2:也可采用上題類似的方法,進(jìn)行劃分小文件的方法。然后在小文件中找出不重復(fù)的整數(shù),并排序。然后再進(jìn)行歸并,注意去除重復(fù)的元素。6.海量數(shù)據(jù)分布在100臺(tái)電腦中,想個(gè)辦法高校統(tǒng)計(jì)出這批數(shù)據(jù)的TOP10。方案1:s在每臺(tái)電腦上求出TOP10,可以采用包含10個(gè)元素的堆完成(TOP10小,用最大堆,TOP10大,用最小堆)。比如求TOP10大,我們首先取前10個(gè)元素調(diào)整成最小堆,如果發(fā)現(xiàn),然后掃描后面的數(shù)據(jù),并與堆頂元素比較,如果比堆頂元素大,那么用該元素替換堆頂,然后再調(diào)整為最小堆。最后堆中的元素就是TOP10大。s求出每臺(tái)電腦上的TOP10后,然后把這100臺(tái)電腦上的TOP10組合起來(lái),共1000個(gè)數(shù)據(jù),再利用上面類似的方法求出TOP10就可以了。桶的大小相同。每個(gè)桶的大小為:。實(shí)際上,這些桶的邊界構(gòu)成了一個(gè)等差數(shù)列(首項(xiàng)為min,公差為),且認(rèn)為將min放入第一個(gè)桶,將max放入第n-1個(gè)桶。s將n個(gè)數(shù)放入n-1個(gè)桶中:將每個(gè)元素分配到某個(gè)桶(編號(hào)為index),其中,并求出分到每個(gè)桶的最大最小數(shù)據(jù)。s最大間隙:除最大最小數(shù)據(jù)max和min以外的n-2個(gè)數(shù)據(jù)放入n-1個(gè)桶中,由抽屜原理可知至少有一個(gè)桶是空的,又因?yàn)槊總€(gè)桶的大小相同,所以最大間隙不會(huì)在同一桶中出現(xiàn),一定是某個(gè)桶的上界和氣候某個(gè)桶的下界之間隙,且該量筒之間的桶(即便好在該連個(gè)便好之間的桶)一定是空桶。也就是說(shuō),最大間隙在桶i的上界和桶j的下界之間產(chǎn)生。一遍掃描即可完成。ps:這個(gè)方案很巧妙,

抽屜原理->至少有一個(gè)桶是空16.將多個(gè)集合合并成沒(méi)有交集的集合:給定一個(gè)字符串的集合,格式如:。要求將其中交集不為空的集合合并,要求合并完成的集合之間無(wú)交集,例如上例應(yīng)輸出。(1)請(qǐng)描述你解決這個(gè)問(wèn)題的思路;(2)給出主要的處理流程,算法,以及算法的復(fù)雜度;(3)請(qǐng)描述可能的改進(jìn)。方案1:采用并查集。首先所有的字符串都在單獨(dú)的并查集中。然后依掃描每個(gè)集合,順序合并將兩個(gè)相鄰元素合并。例如,對(duì)于,首先查看aaa和bbb是否在同一個(gè)并查集中,如果不在,那么把它們所在的并查集合并,然后再看bbb和ccc是否在同一個(gè)并查集中,如果不在,那么也把它們所在的并查集合并。接下來(lái)再掃描其他的集合,當(dāng)所有的集合都掃描完了,并查集代表的集合便是所求。復(fù)雜度應(yīng)該是O(NlgN)的。改進(jìn)的話,首先可以記錄每個(gè)節(jié)點(diǎn)的根結(jié)點(diǎn),改進(jìn)查詢。合并的時(shí)候,可以把大的和小的進(jìn)行合,這樣也減少?gòu)?fù)雜度。方案2:采用倒排表的方法做

17.最大子序列與最大子矩陣問(wèn)題數(shù)組的最大子序列問(wèn)題:給定一個(gè)數(shù)組,其中元素有正,也有負(fù),找出其中一個(gè)連續(xù)子序列,使和最大。方案1:這個(gè)問(wèn)題可以動(dòng)態(tài)規(guī)劃的思想解決。設(shè)表示以第i個(gè)元素結(jié)尾的最大子序列,那么顯然?;谶@一點(diǎn)可以很快用代碼實(shí)現(xiàn)。最大子矩陣問(wèn)題:給定一個(gè)矩陣(二維數(shù)組),其中數(shù)據(jù)有大有小,請(qǐng)找一個(gè)子矩陣,使得子矩陣的和最大,并輸出這個(gè)和。方案1:可以采用與最大子序列類似的思想來(lái)解決。如果我們確定了選擇第i列和第j列之間的元素,那么在這個(gè)范圍內(nèi),其實(shí)就是一個(gè)最大子序列問(wèn)題。如何確定第i列和第j列可以詞用暴搜的方法進(jìn)行。

ps:將子矩陣轉(zhuǎn)換為子序列挺有意思最近有點(diǎn)忙,稍微空閑下來(lái),發(fā)篇總結(jié)貼。

大數(shù)據(jù)量的問(wèn)題是很多面試筆試中經(jīng)常出現(xiàn)的問(wèn)題,比如baidugoogle騰訊這樣的一些涉及到海量數(shù)據(jù)的公司經(jīng)常會(huì)問(wèn)到。

下面的方法是我對(duì)海量數(shù)據(jù)的處理方法進(jìn)行了一個(gè)一般性的總結(jié),當(dāng)然這些方法可能并不能完全覆蓋所有的問(wèn)題,但是這樣的一些方法也基本可以處理絕大多數(shù)遇到的問(wèn)題。下面的一些問(wèn)題基本直接來(lái)源于公司的面試筆試題目,方法不一定最優(yōu),如果你有更好的處理方法,歡迎與我討論。

1.Bloomfilter

適用范圍:可以用來(lái)實(shí)現(xiàn)數(shù)據(jù)字典,進(jìn)行數(shù)據(jù)的判重,或者集合求交集

基本原理及要點(diǎn):

對(duì)于原理來(lái)說(shuō)很簡(jiǎn)單,位數(shù)組+k個(gè)獨(dú)立hash函數(shù)。將hash函數(shù)對(duì)應(yīng)的值的位數(shù)組置1,查找時(shí)如果發(fā)現(xiàn)所有hash函數(shù)對(duì)應(yīng)位都是1說(shuō)明存在,很明顯這個(gè)過(guò)程并不保證查找的結(jié)果是100%正確的。同時(shí)也不支持刪除一個(gè)已經(jīng)插入的關(guān)鍵字,因?yàn)樵撽P(guān)鍵字對(duì)應(yīng)的位會(huì)牽動(dòng)到其他的關(guān)鍵字。所以一個(gè)簡(jiǎn)單的改進(jìn)就是countingBloomfilter,用一個(gè)counter數(shù)組代替位數(shù)組,就可以支持刪除了。

還有一個(gè)比較重要的問(wèn)題,如何根據(jù)輸入元素個(gè)數(shù)n,確定位數(shù)組m的大小及hash函數(shù)個(gè)數(shù)。當(dāng)hash函數(shù)個(gè)數(shù)k=(ln2)*(m/n)時(shí)錯(cuò)誤率最小。在錯(cuò)誤率不大于E的情況下,m至少要等于n*lg(1/E)才能表示任意n個(gè)元素的集合。但m還應(yīng)該更大些,因?yàn)檫€要保證bit數(shù)組里至少一半為0,則m應(yīng)該>=nlg(1/E)*lge大概就是nlg(1/E)1.44倍(lg表示以2為底的對(duì)數(shù))。

舉個(gè)例子我們假設(shè)錯(cuò)誤率為0.01,則此時(shí)m應(yīng)大概是n的13倍。這樣k大概是8個(gè)。

注意這里m與n的單位不同,m是bit為單位,而n則是以元素個(gè)數(shù)為單位(準(zhǔn)確的說(shuō)是不同元素的個(gè)數(shù))。通常單個(gè)元素的長(zhǎng)度都是有很多bit的。所以使用bloomfilter內(nèi)存上通常都是節(jié)省的。

擴(kuò)展:

Bloomfilter將集合中的元素映射到位數(shù)組中,用k(k為哈希函數(shù)個(gè)數(shù))個(gè)映射位是否全1表示元素在不在這個(gè)集合中。Countingbloomfilter(CBF)將位數(shù)組中的每一位擴(kuò)展為一個(gè)counter,從而支持了元素的刪除操作。SpectralBloomFilter(SBF)將其與集合元素的出現(xiàn)次數(shù)關(guān)聯(lián)。SBF采用counter中的最小值來(lái)近似表示元素的出現(xiàn)頻率。

問(wèn)題實(shí)例:給你A,B兩個(gè)文件,各存放50億條URL,每條URL占用64字節(jié),內(nèi)存限制是4G,讓你找出A,B文件共同的URL。如果是三個(gè)乃至n個(gè)文件呢?

根據(jù)這個(gè)問(wèn)題我們來(lái)計(jì)算下內(nèi)存的占用,4G=2^32大概是40億*8大概是340億,n=50億,如果按出錯(cuò)率0.01算需要的大概是650億個(gè)bit。現(xiàn)在可用的是340億,相差并不多,這樣可能會(huì)使出錯(cuò)率上升些。另外如果這些urlip是一一對(duì)應(yīng)的,就可以轉(zhuǎn)換成ip,則大大簡(jiǎn)單了。

2.Hashing

適用范圍:快速查找,刪除的基本數(shù)據(jù)結(jié)構(gòu),通常需要總數(shù)據(jù)量可以放入內(nèi)存

基本原理及要點(diǎn):

hash函數(shù)選擇,針對(duì)字符串,整數(shù),排列,具體相應(yīng)的hash方法。

碰撞處理,一種是openhashing,也稱為拉鏈法;另一種就是closedhashing,也稱開地址法,openedaddressing。

擴(kuò)展:

d-lefthashing中的d是多個(gè)的意思,我們先簡(jiǎn)化這個(gè)問(wèn)題,看一看2-lefthashing。2-lefthashing指的是將一個(gè)哈希表分成長(zhǎng)度相等的兩半,分別叫做T1和T2,給T1和T2分別配備一個(gè)哈希函數(shù),h1和h2。在存儲(chǔ)一個(gè)新的key時(shí),同時(shí)用兩個(gè)哈希函數(shù)進(jìn)行計(jì)算,得出兩個(gè)地址h1[key]和h2[key]。這時(shí)需要檢查T1中的h1[key]位置和T2中的h2[key]位置,哪一個(gè)位置已經(jīng)存儲(chǔ)的(有碰撞的)key比較多,然后將新key存儲(chǔ)在負(fù)載少的位置。如果兩邊一樣多,比如兩個(gè)位置都為空或者都存儲(chǔ)了一個(gè)key,就把新key存儲(chǔ)在左邊的T1子表中,2-left也由此而來(lái)。在查找一個(gè)key時(shí),必須進(jìn)行兩次hash,同時(shí)查找兩個(gè)位置。

問(wèn)題實(shí)例:

1).海量日志數(shù)據(jù),提取出某日訪問(wèn)百度次數(shù)最多的那個(gè)IP。

IP的數(shù)目還是有限的,最多2^32個(gè),所以可以考慮使用hash將ip直接存入內(nèi)存,然后進(jìn)行統(tǒng)計(jì)。

3.bit-map

適用范圍:可進(jìn)行數(shù)據(jù)的快速查找,判重,刪除,一般來(lái)說(shuō)數(shù)據(jù)范圍是int的10倍以下

基本原理及要點(diǎn):使用bit數(shù)組來(lái)表示某些元素是否存在,比如8位電話號(hào)碼

擴(kuò)展:bloomfilter可以看做是對(duì)bit-map的擴(kuò)展

問(wèn)題實(shí)例:

1)已知某個(gè)文件內(nèi)包含一些電話號(hào)碼,每個(gè)號(hào)碼為8位數(shù)字,統(tǒng)計(jì)不同號(hào)碼的個(gè)數(shù)。

8位最多99999999,大概需要99m個(gè)bit,大概10幾m字節(jié)的內(nèi)存即可。

2)2.5億個(gè)整數(shù)中找出不重復(fù)的整數(shù)的個(gè)數(shù),內(nèi)存空間不足以容納這2.5億個(gè)整數(shù)。

將bit-map擴(kuò)展一下,用2bit表示一個(gè)數(shù)即可,0表示未出現(xiàn),1表示出現(xiàn)一次,2表示出現(xiàn)2次及以上?;蛘呶覀儾挥?bit來(lái)進(jìn)行表示,我們用兩個(gè)bit-map即可模擬實(shí)現(xiàn)這個(gè)2bit-map。

4.堆

適用范圍:海量數(shù)據(jù)前n大,并且n比較小,堆可以放入內(nèi)存

基本原理及要點(diǎn):最大堆求前n小,最小堆求前n大。方法,比如求前n小,我們比較當(dāng)前元素與最大堆里的最大元素,如果它小于最大元素,則應(yīng)該替換那個(gè)最大元素。這樣最后得到的n個(gè)元素就是最小的n個(gè)。適合大數(shù)據(jù)量,求前n小,n的大小比較小的情況,這樣可以掃描一遍即可得到所有的前n元素,效率很高。

擴(kuò)展:雙堆,一個(gè)最大堆與一個(gè)最小堆結(jié)合,可以用來(lái)維護(hù)中位數(shù)。

問(wèn)題實(shí)例:

1)100w個(gè)數(shù)中找最大的前100個(gè)數(shù)。

用一個(gè)100個(gè)元素大小的最小堆即可。

5.雙層桶劃分

適用范圍:第k大,中位數(shù),不重復(fù)或重復(fù)的數(shù)字

基本原理及要點(diǎn):因?yàn)樵胤秶艽?,不能利用直接尋址表,所以通過(guò)多次劃分,逐步確定范圍,然后最后在一個(gè)可以接受的范圍內(nèi)進(jìn)行。可以通過(guò)多次縮小,雙層只是一個(gè)例子。

擴(kuò)展:

問(wèn)題實(shí)例:

1).2.5億個(gè)整數(shù)中找出不重復(fù)的整數(shù)的個(gè)數(shù),內(nèi)存空間不足以容納這2.5億個(gè)整數(shù)。

有點(diǎn)像鴿巢原理,整數(shù)個(gè)數(shù)為2^32,也就是,我們可以將這2^32個(gè)數(shù),劃分為2^8個(gè)區(qū)域(比如用單個(gè)文件代表一個(gè)區(qū)域),然后將數(shù)據(jù)分離到不同的區(qū)域,然后不同的區(qū)域在利用bitmap就可以直接解決了。也就是說(shuō)只要有足夠的磁盤空間,就可以很方便的解決。

2).5億個(gè)int找它們的中位數(shù)。

這個(gè)例子比上面那個(gè)更明顯。首先我們將int劃分為2^16個(gè)區(qū)域,然后讀取數(shù)據(jù)統(tǒng)計(jì)落到各個(gè)區(qū)域里的數(shù)的個(gè)數(shù),之后我們根據(jù)統(tǒng)計(jì)結(jié)果就可以判斷中位數(shù)落到那個(gè)區(qū)域,同時(shí)知道這個(gè)區(qū)域中的第幾大數(shù)剛好是中位數(shù)。然后第二次掃描我們只統(tǒng)計(jì)落在這個(gè)區(qū)域中的那些數(shù)就可以了。

實(shí)際上,如果不是int是int64,我們可以經(jīng)過(guò)3次這樣的劃分即可降低到可以接受的程度。即可以先將int64分成2^24個(gè)區(qū)域,然后確定區(qū)域的第幾大數(shù),在將該區(qū)域分成2^20個(gè)子區(qū)域,然后確定是子區(qū)域的第幾大數(shù),然后子區(qū)域里的數(shù)的個(gè)數(shù)只有2^20,就可以直接利用directaddrtable進(jìn)行統(tǒng)計(jì)了。

6.數(shù)據(jù)庫(kù)索引

適用范圍:大數(shù)據(jù)量的增刪改查

基本原理及要點(diǎn):利用數(shù)據(jù)的設(shè)計(jì)實(shí)現(xiàn)方法,對(duì)海量數(shù)據(jù)的增刪改查進(jìn)行處理。

擴(kuò)展:

問(wèn)題實(shí)例:

7.倒排索引(Invertedindex)

適用范圍:搜索引擎,關(guān)鍵字查詢

基本原理及要點(diǎn):為何叫倒排索引?一種索引方法,被用來(lái)存儲(chǔ)在全文搜索下某個(gè)單詞在一個(gè)文檔或者一組文檔中的存儲(chǔ)位置的映射。

以英文為例,下面是要被索引的文本:

T0="itiswhatitis"

T1="whatisit"

T2="itisabanana"

我們就能得到下面的反向文件索引:

"a":

{2}

"banana":{2}

"is":

{0,1,2}

"it":

{0,1,2}

"what":

{0,1}

檢索的條件"what","is"和"it"將對(duì)應(yīng)集合的交集。

正向索引開發(fā)出來(lái)用來(lái)存儲(chǔ)每個(gè)文檔的單詞的列表。正向索引的查詢往往滿足每個(gè)文檔有序頻繁的全文查詢和每個(gè)單詞在校驗(yàn)文檔中的驗(yàn)證這樣的查詢。在正向索引中,文檔占據(jù)了中心的位置,每個(gè)文檔指向了一個(gè)它所包含的索引項(xiàng)的序列。也就是說(shuō)文檔指向了它包含的那些單詞,而反向索引則是單詞指向了包含它的文檔,很容易看到這個(gè)反向的關(guān)系。

擴(kuò)展:

問(wèn)題實(shí)例:文檔檢索系統(tǒng),查詢那些文件包含了某單詞,比如常見(jiàn)的學(xué)術(shù)論文的關(guān)鍵字搜索。

8.外排序

適用范圍:大數(shù)據(jù)的排序,去重

基本原理及要點(diǎn):外排序的歸并方法,置換選擇敗者樹原理,最優(yōu)歸并樹

擴(kuò)展:

問(wèn)題實(shí)例:

1).有一個(gè)1G大小的一個(gè)文件,里面每一行是一個(gè)詞,詞的大小不超過(guò)16個(gè)字節(jié),內(nèi)存限制大小是1M。返回頻數(shù)最高的100個(gè)詞。

這個(gè)數(shù)據(jù)具有很明顯的特點(diǎn),詞的大小為16個(gè)字節(jié),但是內(nèi)存只有1m做hash有些不夠,所以可以用來(lái)排序。內(nèi)存可以當(dāng)輸入緩沖區(qū)使用。

9.trie樹

適用范圍:數(shù)據(jù)量大,重復(fù)多,但是數(shù)據(jù)種類小可以放入內(nèi)存

基本原理及要點(diǎn):實(shí)現(xiàn)方式,節(jié)點(diǎn)孩子的表示方式

擴(kuò)展:壓縮實(shí)現(xiàn)。

問(wèn)題實(shí)例:

1).有10個(gè)文件,每個(gè)文件1G,每個(gè)文件的每一行都存放的是用戶的query,每個(gè)文件的query都可能重復(fù)。要你按照query的頻度排序。

2).1000萬(wàn)字符串,其中有些是相同的(重復(fù)),需要把重復(fù)的全部去掉,保留沒(méi)有重復(fù)的字符串。請(qǐng)問(wèn)怎么設(shè)計(jì)和實(shí)現(xiàn)?

3).尋找熱門查詢:查詢串的重復(fù)度比較高,雖然總數(shù)是1千萬(wàn),但如果除去重復(fù)后,不超過(guò)3百萬(wàn)個(gè),每個(gè)不超過(guò)255字節(jié)。

10.分布式處理mapreduce

適用范圍:數(shù)據(jù)量大,但是數(shù)據(jù)種類小可以放入內(nèi)存

基本原理及要點(diǎn):將數(shù)據(jù)交給不同的機(jī)器去處理,數(shù)據(jù)劃分,結(jié)果歸約。

擴(kuò)展:

問(wèn)題實(shí)例:

1).ThecanonicalexampleapplicationofMapReduceisaprocesstocounttheappearancesof

eachdifferentwordinasetofdocuments:

voidmap(Stringname,Stringdocument):

//name:documentname

//document:documentcontents

foreachwordwindocument:

EmitIntermediate(w,1);

voidreduce(Stringword,IteratorpartialCounts):

//key:aword

//values:alistofaggregatedpartialcounts

intresult=0;

foreachvinpartialCounts:

result+=ParseInt(v);

Emit(result);

Here,eachdocumentissplitinwords,andeachwordiscountedinitiallywitha"1"valueby

theMapfunction,usingthewordastheresultkey.Theframeworkputstogetherallthepairs

withthesamekeyandfeedsthemtothesamecalltoReduce,thusthisfunctionjustneedsto

sumallofitsinputvaluestofindthetotalappearancesofthatword.

2).海量數(shù)據(jù)分布在100臺(tái)電腦中,想個(gè)辦法高效統(tǒng)計(jì)出這批數(shù)據(jù)的TOP10。

3).一共有N個(gè)機(jī)器,每個(gè)機(jī)器上有N個(gè)數(shù)。每個(gè)機(jī)器最多存O(N)個(gè)數(shù)并對(duì)它們操作。如何找到N^2個(gè)數(shù)的中數(shù)(median)?

經(jīng)典問(wèn)題分析

上千萬(wàn)or億數(shù)據(jù)(有重復(fù)),統(tǒng)計(jì)其中出現(xiàn)次數(shù)最多的前N個(gè)數(shù)據(jù),分兩種情況:可一次讀入內(nèi)存,不可一次讀入。

可用思路:trie樹+堆,數(shù)據(jù)庫(kù)索引,劃分子集分別統(tǒng)計(jì),hash,分布式計(jì)算,近似統(tǒng)計(jì),外排序

所謂的是否能一次讀入內(nèi)存,實(shí)際上應(yīng)該指去除重復(fù)后的數(shù)據(jù)量。如果去重后數(shù)據(jù)可以放入內(nèi)存,我們可以為數(shù)據(jù)建立字典,比如通過(guò)map,hashmap,trie,然后直接進(jìn)行統(tǒng)計(jì)即可。當(dāng)然在更新每條數(shù)據(jù)的出現(xiàn)次數(shù)的時(shí)候,我們可以利用一個(gè)堆來(lái)維護(hù)出現(xiàn)次數(shù)最多的前N個(gè)數(shù)據(jù),當(dāng)然這樣導(dǎo)致維護(hù)次數(shù)增加,不如完全統(tǒng)計(jì)后在求前N大效率高。

如果數(shù)據(jù)無(wú)法放入內(nèi)存。一方面我們可以考慮上面的字典方法能

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論