江蘇省蘇州市昆山市、太倉市達標名校2023年中考聯(lián)考數學試題含解析_第1頁
江蘇省蘇州市昆山市、太倉市達標名校2023年中考聯(lián)考數學試題含解析_第2頁
江蘇省蘇州市昆山市、太倉市達標名校2023年中考聯(lián)考數學試題含解析_第3頁
江蘇省蘇州市昆山市、太倉市達標名校2023年中考聯(lián)考數學試題含解析_第4頁
江蘇省蘇州市昆山市、太倉市達標名校2023年中考聯(lián)考數學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,把一塊含有45°角的直角三角板的兩個頂點放在直尺的對邊上.如果∠1=20°,那么∠2的度數是()A.30° B.25°C.20° D.15°2.如圖是由4個相同的正方體搭成的幾何體,則其俯視圖是()A. B. C. D.3.已知2是關于x的方程x2-2mx+3m=0的一個根,并且這個方程的兩個根恰好是等腰三角形ABC的兩條邊長,則三角形ABC的周長為()A.10 B.14 C.10或14 D.8或104.某美術社團為練習素描,他們第一次用120元買了若干本相同的畫冊,第二次用240元在同一家商店買與上一次相同的畫冊,這次商家每本優(yōu)惠4元,結果比上次多買了20本.求第一次買了多少本畫冊?設第一次買了x本畫冊,列方程正確的是()A. B.C. D.5.若,,則的值是()A.2 B.﹣2 C.4 D.﹣46.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值為()A. B. C. D.7.河堤橫斷面如圖所示,堤高BC=6米,迎水坡AB的坡比為1:,則AB的長為A.12米 B.4米 C.5米 D.6米8.△ABC在正方形網格中的位置如圖所示,則cosB的值為()A. B. C. D.29.關于?ABCD的敘述,不正確的是()A.若AB⊥BC,則?ABCD是矩形B.若AC⊥BD,則?ABCD是正方形C.若AC=BD,則?ABCD是矩形D.若AB=AD,則?ABCD是菱形10.為了解某小區(qū)小孩暑期的學習情況,王老師隨機調查了該小區(qū)8個小孩某天的學習時間,結果如下(單位:小時):1.5,1.5,3,4,2,5,2.5,4.5,關于這組數據,下列結論錯誤的是()A.極差是3.5 B.眾數是1.5 C.中位數是3 D.平均數是311.下列計算正確的是()A.x2+x2=x4 B.x8÷x2=x4 C.x2?x3=x6 D.(-x)2-x2=012.如圖,在網格中,小正方形的邊長均為1,點A,B,C都在格點上,則∠ABC的正切值是()A. B.2 C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ?AC,其中正確的結論的個數是______.14.已知整數k<5,若△ABC的邊長均滿足關于x的方程,則△ABC的周長是.15.如果將“概率”的英文單詞probability中的11個字母分別寫在11張相同的卡片上,字面朝下隨意放在桌子上,任取一張,那么取到字母b的概率是________.16.如圖,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=_____.17.如圖,已知直線m∥n,∠1=100°,則∠2的度數為_____.18.如圖,菱形的邊,,是上一點,,是邊上一動點,將梯形沿直線折疊,的對應點為,當的長度最小時,的長為__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)圖1和圖2中,優(yōu)弧紙片所在⊙O的半徑為2,AB=2,點P為優(yōu)弧上一點(點P不與A,B重合),將圖形沿BP折疊,得到點A的對稱點A′.發(fā)現:(1)點O到弦AB的距離是,當BP經過點O時,∠ABA′=;(2)當BA′與⊙O相切時,如圖2,求折痕的長.拓展:把上圖中的優(yōu)弧紙片沿直徑MN剪裁,得到半圓形紙片,點P(不與點M,N重合)為半圓上一點,將圓形沿NP折疊,分別得到點M,O的對稱點A′,O′,設∠MNP=α.(1)當α=15°時,過點A′作A′C∥MN,如圖3,判斷A′C與半圓O的位置關系,并說明理由;(2)如圖4,當α=°時,NA′與半圓O相切,當α=°時,點O′落在上.(3)當線段NO′與半圓O只有一個公共點N時,直接寫出β的取值范圍.20.(6分)計算:.21.(6分)端午節(jié)“賽龍舟,吃粽子”是中華民族的傳統(tǒng)習俗.節(jié)日期間,小邱家包了三種不同餡的粽子,分別是:紅棗粽子(記為A),豆沙粽子(記為B),肉粽子(記為C),這些粽子除了餡不同,其余均相同.粽子煮好后,小邱的媽媽給一個白盤中放入了兩個紅棗粽子,一個豆沙粽子和一個肉粽子;給一個花盤中放入了兩個肉粽子,一個紅棗粽子和一個豆沙粽子.根據以上情況,請你回答下列問題:假設小邱從白盤中隨機取一個粽子,恰好取到紅棗粽子的概率是多少?若小邱先從白盤里的四個粽子中隨機取一個粽子,再從花盤里的四個粽子中隨機取一個粽子,請用列表法或畫樹狀圖的方法,求小邱取到的兩個粽子中一個是紅棗粽子、一個是豆沙粽子的概率.22.(8分)已知P是⊙O外一點,PO交⊙O于點C,OC=CP=2,弦AB⊥OC,∠AOC的度數為60°,連接PB.求BC的長;求證:PB是⊙O的切線.23.(8分)計算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.24.(10分)在第23個世界讀書日前夕,我市某中學為了解本校學生的每周課外閱讀時間用t表示,單位:小時,采用隨機抽樣的方法進行問卷調查,調查結果按,,,分為四個等級,并依次用A,B,C,D表示,根據調查結果統(tǒng)計的數據,繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中給出的信息解答下列問題:求本次調查的學生人數;求扇形統(tǒng)計圖中等級B所在扇形的圓心角度數,并把條形統(tǒng)計圖補充完整;若該校共有學生1200人,試估計每周課外閱讀時間滿足的人數.25.(10分)孔明同學對本校學生會組織的“為貧困山區(qū)獻愛心”自愿捐款活動進行抽樣調查,得到了一組學生捐款情況的數據.如圖是根據這組數據繪制的統(tǒng)計圖,圖中從左到右各長方形的高度之比為3:4:5:10:8,又知此次調查中捐款30元的學生一共16人.孔明同學調查的這組學生共有_______人;這組數據的眾數是_____元,中位數是_____元;若該校有2000名學生,都進行了捐款,估計全校學生共捐款多少元?26.(12分)一次函數的圖象經過點和點,求一次函數的解析式.27.(12分)解方程:xx+1+2

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】根據題意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,2、A【解析】試題分析:從上面看是一行3個正方形.故選A考點:三視圖3、B【解析】試題分析:∵2是關于x的方程x2﹣2mx+3m=0的一個根,∴22﹣4m+3m=0,m=4,∴x2﹣8x+12=0,解得x1=2,x2=1.①當1是腰時,2是底邊,此時周長=1+1+2=2;②當1是底邊時,2是腰,2+2<1,不能構成三角形.所以它的周長是2.考點:解一元二次方程-因式分解法;一元二次方程的解;三角形三邊關系;等腰三角形的性質.4、A【解析】分析:由設第一次買了x本資料,則設第二次買了(x+20)本資料,由等量關系:第二次比第一次每本優(yōu)惠4元,即可得到方程.詳解:設他上月買了x本筆記本,則這次買了(x+20)本,根據題意得:.故選A.點睛:本題考查了分式方程的應用,解答本題的關鍵是讀懂題意,設出未知數,找出合適的等量關系,列方程解答即可.5、D【解析】因為,所以,因為,故選D.6、A【解析】

根據銳角三角函數的定義求出即可.【詳解】解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴tanA=.故選A.【點睛】本題考查了銳角三角函數的定義,熟記銳角三角函數的定義內容是解題的關鍵.7、A【解析】

試題分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).∴(米).故選A.【詳解】請在此輸入詳解!8、A【解析】

解:在直角△ABD中,BD=2,AD=4,則AB=,則cosB=.故選A.9、B【解析】

由矩形和菱形的判定方法得出A、C、D正確,B不正確;即可得出結論.【詳解】解:A、若AB⊥BC,則是矩形,正確;B、若,則是正方形,不正確;C、若,則是矩形,正確;D、若,則是菱形,正確;故選B.【點睛】本題考查了正方形的判定、矩形的判定、菱形的判定;熟練掌握正方形的判定、矩形的判定、菱形的判定是解題的關鍵.10、C【解析】

由極差、眾數、中位數、平均數的定義對四個選項一一判斷即可.【詳解】A.極差為5﹣1.5=3.5,此選項正確;B.1.5個數最多,為2個,眾數是1.5,此選項正確;C.將式子由小到大排列為:1.5,1.5,2,2.5,3,4,4.5,5,中位數為×(2.5+3)=2.75,此選項錯誤;D.平均數為:×(1.5+1.5+2+2.5+3+4+4.5+5)=3,此選項正確.故選C.【點睛】本題主要考查平均數、眾數、中位數、極差的概念,其中在求中位數的時候一定要將給出的數據按從大到小或者從小到大的順序排列起來再進行求解.11、D【解析】試題解析:A原式=2x2,故A不正確;B原式=x6,故B不正確;C原式=x5,故C不正確;D原式=x2-x2=0,故D正確;故選D考點:1.同底數冪的除法;2.合并同類項;3.同底數冪的乘法;4.冪的乘方與積的乘方.12、A【解析】分析:連接AC,根據勾股定理求出AC、BC、AB的長,根據勾股定理的逆定理得到△ABC是直角三角形,根據正切的定義計算即可.詳解:連接AC,

由網格特點和勾股定理可知,

AC=,AC2+AB2=10,BC2=10,

∴AC2+AB2=BC2,

∴△ABC是直角三角形,

∴tan∠ABC=.點睛:考查的是銳角三角函數的定義、勾股定理及其逆定理的應用,熟記銳角三角函數的定義、掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、①②③④.【解析】

由正方形的性質得出∠FAD=90°,AD=AF=EF,證出∠CAD=∠AFG,由AAS證明△FGA≌△ACD,得出AC=FG,①正確;

證明四邊形CBFG是矩形,得出S△FAB=FB?FG=S四邊形CBFG,②正確;

由等腰直角三角形的性質和矩形的性質得出∠ABC=∠ABF=45°,③正確;

證出△ACD∽△FEQ,得出對應邊成比例,得出④正確.【詳解】解:∵四邊形ADEF為正方形,

∴∠FAD=90°,AD=AF=EF,

∴∠CAD+∠FAG=90°,

∵FG⊥CA,

∴∠GAF+∠AFG=90°,

∴∠CAD=∠AFG,

在△FGA和△ACD中,,

∴△FGA≌△ACD(AAS),

∴AC=FG,①正確;

∵BC=AC,

∴FG=BC,

∵∠ACB=90°,FG⊥CA,

∴FG∥BC,

∴四邊形CBFG是矩形,∴∠CBF=90°,S△FAB=FB?FG=S四邊形CBFG,②正確;

∵CA=CB,∠C=∠CBF=90°,

∴∠ABC=∠ABF=45°,③正確;

∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,

∴△ACD∽△FEQ,

∴AC:AD=FE:FQ,

∴AD?FE=AD2=FQ?AC,④正確;

故答案為①②③④.【點睛】本題考查了相似三角形的判定與性質、全等三角形的判定與性質、正方形的性質、矩形的判定與性質、等腰直角三角形的性質;熟練掌握正方形的性質,證明三角形全等和三角形相似是解決問題的關鍵.14、6或12或1.【解析】

根據題意得k≥0且(3)2﹣4×8≥0,解得k≥.∵整數k<5,∴k=4.∴方程變形為x2﹣6x+8=0,解得x1=2,x2=4.∵△ABC的邊長均滿足關于x的方程x2﹣6x+8=0,∴△ABC的邊長為2、2、2或4、4、4或4、4、2.∴△ABC的周長為6或12或1.考點:一元二次方程根的判別式,因式分解法解一元二次方程,三角形三邊關系,分類思想的應用.【詳解】請在此輸入詳解!15、【解析】分析:讓英文單詞probability中字母b的個數除以字母的總個數即為所求的概率.詳解:∵英文單詞probability中,一共有11個字母,其中字母b有2個,∴任取一張,那么取到字母b的概率為.故答案為.點睛:本題考查了概率公式,用到的知識點為:概率等于所求情況數與總情況數之比.16、3:2;【解析】

由AG//BC可得△AFG與△BFD相似,△AEG與△CED相似,根據相似比求解.【詳解】假設:AF=3x,BF=5x,∵△AFG與△BFD相似∴AG=3y,BD=5y

由題意BC:CD=3:2則CD=2y

∵△AEG與△CED相似∴AE:EC=AG:DC=3:2.【點睛】本題考查的是相似三角形,熟練掌握相似三角形的性質是解題的關鍵.17、80°.【解析】

如圖,已知m∥n,根據平行線的性質可得∠1=∠3,再由平角的定義即可求得∠2的度數.【詳解】如圖,∵m∥n,∴∠1=∠3,∵∠1=100°,∴∠3=100°,∴∠2=180°﹣100°=80°,故答案為80°.【點睛】本題考查了平行線的性質,熟練運用平行線的性質是解決問題的關鍵.18、【解析】如圖所示,過點作,交于點.在菱形中,∵,且,所以為等邊三角形,.根據“等腰三角形三線合一”可得,因為,所以.在中,根據勾股定理可得,.因為梯形沿直線折疊,點的對應點為,根據翻折的性質可得,點在以點為圓心,為半徑的弧上,則點在上時,的長度最小,此時,因為.所以,所以,所以.點睛:A′為四邊形ADQP沿PQ翻折得到,由題目中可知AP長為定值,即A′點在以P為圓心、AP為半徑的圓上,當C、A′、P在同一條直線時CA′取最值,由此結合直角三角形勾股定理、等邊三角形性質求得此時CQ的長度即可.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、發(fā)現:(1)1,60°;(2)2;拓展:(1)相切,理由詳見解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【解析】

發(fā)現:(1)利用垂徑定理和勾股定理即可求出點O到AB的距離;利用銳角三角函數的定義及軸對稱性就可求出∠ABA′.(2)根據切線的性質得到∠OBA′=90°,從而得到∠ABA′=120°,就可求出∠ABP,進而求出∠OBP=30°.過點O作OG⊥BP,垂足為G,容易求出OG、BG的長,根據垂徑定理就可求出折痕的長.拓展:(1)過A'、O作A'H⊥MN于點H,OD⊥A'C于點D.用含30°角的直角三角形的性質可得OD=A'H=A'N=MN=2可判定A′C與半圓相切;(2)當NA′與半圓相切時,可知ON⊥A′N,則可知α=45°,當O′在時,連接MO′,則可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;(3)根據點A′的位置不同得到線段NO′與半圓O只有一個公共點N時α的取值范圍是0°<α<30°或45°≤α<90°.【詳解】發(fā)現:(1)過點O作OH⊥AB,垂足為H,如圖1所示,∵⊙O的半徑為2,AB=2,∴OH==在△BOH中,OH=1,BO=2∴∠ABO=30°∵圖形沿BP折疊,得到點A的對稱點A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)過點O作OG⊥BP,垂足為G,如圖2所示.∵BA′與⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的長為2拓展:(1)相切.分別過A'、O作A'H⊥MN于點H,OD⊥A'C于點D.如圖3所示,∵A'C∥MN∴四邊形A'HOD是矩形∴A'H=O∵α=15°∴∠A'NH=30∴OD=A'H=A'N=MN=2∴A'C與半圓(2)當NA′與半圓O相切時,則ON⊥NA′,∴∠ONA′=2α=90°,∴α=45當O′在上時,連接MO′,則可知NO′=MN,∴∠O′MN=0°∴∠MNO′=60°,∴α=30°,故答案為:45°;30°.(3)∵點P,M不重合,∴α>0,由(2)可知當α增大到30°時,點O′在半圓上,∴當0°<α<30°時點O′在半圓內,線段NO′與半圓只有一個公共點B;當α增大到45°時NA′與半圓相切,即線段NO′與半圓只有一個公共點B.當α繼續(xù)增大時,點P逐漸靠近點N,但是點P,N不重合,∴α<90°,∴當45°≤α<90°線段BO′與半圓只有一個公共點B.綜上所述0°<α<30°或45°≤α<90°.【點睛】本題考查了切線的性質、垂徑定理、勾股定理、三角函數的定義、30°角所對的直角邊等于斜邊的一半、翻折問題等知識,正確的作出輔助線是解題的關鍵.20、【解析】

根據絕對值的性質、零指數冪的性質、特殊角的三角函數值、負整數指數冪的性質、二次根式的性質及乘方的定義分別計算后,再合并即可【詳解】原式.【點睛】此題主要考查了實數運算,正確化簡各數是解題關鍵.21、(1);(2)【解析】

(1)由題意知,共有4種等可能的結果,而取到紅棗粽子的結果有2種則P(恰好取到紅棗粽子)=.(2)由題意可得,出現的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴由上表可知,取到的兩個粽子共有16種等可能的結果,而一個是紅棗粽子,一個是豆沙粽子的結果有3種,則P(取到一個紅棗粽子,一個豆沙粽子)=.考點:列表法與樹狀圖法;概率公式.22、(1)BC=2;(2)見解析【解析】試題分析:(1)連接OB,根據已知條件判定△OBC的等邊三角形,則BC=OC=2;(2)欲證明PB是⊙O的切線,只需證得OB⊥PB即可.(1)解:如圖,連接OB.∵AB⊥OC,∠AOC=60°,∴∠OAB=30°,∵OB=OA,∴∠OBA=∠OAB=30°,∴∠BOC=60°,∵OB=OC,∴△OBC的等邊三角形,∴BC=OC.又OC=2,∴BC=2;(2)證明:由(1)知,△OBC的等邊三角形,則∠COB=60°,BC=OC.∵OC=CP,∴BC=PC,∴∠P=∠CBP.又∵∠OCB=60°,∠OCB=2∠P,∴∠P=30°,∴∠OBP=90°,即OB⊥PB.又∵OB是半徑,∴PB是⊙O的切線.考點:切線的判定.23、【解析】分析:化簡絕對值、0次冪和負指數冪,代入30°角的三角函數值,然后按照有理數的運算順序和法則進行計算即可.詳解:原式=+1﹣2×+=.點睛:本題考查了實數的運算,用到的知識點主要有絕對值、零指數冪和負指數冪,以及特殊角的三角函數值,熟記相關法則和性質是解決此題的關鍵.24、本次調查的學生人數為200人;B所在扇形的圓心角為,補全條形圖見解析;全校每周課外閱讀時間滿足的約有360人.【解析】【分析】根據等級A的人數及所占百分比即可得出調查學生人數;先計算出C在扇形圖中的百分比,用在扇形圖中的百分比可計算出B在扇形圖中的百分比,再計算出B在扇形的圓心角;總人數課外閱讀時間滿足的百分比即得所求.【詳解】由條形圖知,A級的人數為20人,由扇形圖知:A級人數占總調查人數的,所以:人,即本次調查的學生人數為200人;由條形圖知:C級的人數為60人,所以C級所占的百分比為:,B級所占的百分比為:,B級的人數為人,D級的人數為:人,B所在扇形的圓心角為:,補全條形圖如圖

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論