2023年中考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)專項(xiàng)突破專題10 相似三角形的綜合問題(教師版)_第1頁
2023年中考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)專項(xiàng)突破專題10 相似三角形的綜合問題(教師版)_第2頁
2023年中考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)專項(xiàng)突破專題10 相似三角形的綜合問題(教師版)_第3頁
2023年中考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)專項(xiàng)突破專題10 相似三角形的綜合問題(教師版)_第4頁
2023年中考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)專項(xiàng)突破專題10 相似三角形的綜合問題(教師版)_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題10相似三角形的綜合問題【典型例題】1.(2021·山東省濟(jì)南中學(xué)九年級(jí)期中)如圖1,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)D、E分別是邊SKIPIF1<0、SKIPIF1<0的中點(diǎn),連接SKIPIF1<0.將SKIPIF1<0繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為SKIPIF1<0.(1)問題發(fā)現(xiàn)①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0________;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0______.(2)拓展探究試判斷:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的大小有無變化?請(qǐng)僅就圖2的情形給出證明.(3)問題解決SKIPIF1<0繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)至A、B、E三點(diǎn)在同一條直線上時(shí),請(qǐng)直接寫出線段SKIPIF1<0的長________.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)當(dāng)0°≤α<360°時(shí),SKIPIF1<0的大小沒有變化,證明見解析(3)BD的長為SKIPIF1<0或SKIPIF1<0【解析】【分析】(1)①當(dāng)α=0°時(shí),在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根據(jù)點(diǎn)D、E分別是邊BC、AC的中點(diǎn),分別求出AE、BD的大小,即可求出的SKIPIF1<0值是多少.②α=180°時(shí),可得AB∥DE,然后根據(jù)SKIPIF1<0=SKIPIF1<0,求出SKIPIF1<0的值是多少即可.(2)首先判斷出∠ECA=∠DCB,再根據(jù)SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,判斷出△ECA∽△DCB,然后由相似三角形的對(duì)應(yīng)邊成比例,求得答案.(3)分兩種情形:①如圖3﹣1中,當(dāng)點(diǎn)E在AB的延長線上時(shí),②如圖3﹣2中,當(dāng)點(diǎn)E在線段AB上時(shí),分別求解即可.(1)解:①當(dāng)α=0°時(shí),∵Rt△ABC中,∠B=90°,∴AC=SKIPIF1<0=SKIPIF1<0=2SKIPIF1<0,∵點(diǎn)D、E分別是邊BC、AC的中點(diǎn),∴AE=SKIPIF1<0AC=SKIPIF1<0,BD=SKIPIF1<0BC=1,∴SKIPIF1<0=SKIPIF1<0.②如圖1中,當(dāng)α=180°時(shí),可得AB∥DE,∵SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0.故答案為:①SKIPIF1<0,②SKIPIF1<0.(2)解:如圖2,當(dāng)0°≤α<360°時(shí),SKIPIF1<0的大小沒有變化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴△ECA∽△DCB,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,即當(dāng)0°≤α<360°時(shí),SKIPIF1<0的大小沒有變化.(3)解:①如圖3﹣1中,當(dāng)點(diǎn)E在AB的延長線上時(shí),在Rt△BCE中,CE=SKIPIF1<0,BC=2,∴BE=SKIPIF1<0=SKIPIF1<0=1,∴AE=AB+BE=5,∵SKIPIF1<0=SKIPIF1<0,∴BD=SKIPIF1<0=SKIPIF1<0.②如圖3﹣2中,當(dāng)點(diǎn)E在線段AB上時(shí),BE=SKIPIF1<0=SKIPIF1<0=1,AE=AB-BE=4﹣1=3,∵SKIPIF1<0=SKIPIF1<0,∴BD=SKIPIF1<0,綜上所述,滿足條件的BD的長為SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了旋轉(zhuǎn)變換,相似三角形的判定和性質(zhì),平行線的性質(zhì),勾股定理等知識(shí),解題的關(guān)鍵是正確尋找相似三角形解決問題,學(xué)會(huì)用分類討論的思想思考問題.【專題訓(xùn)練】選擇題1.(2022·江蘇海門·九年級(jí)期末)如圖,AB∥CD,AD與BC相交于點(diǎn)O,OB=2,OC=5,AB=4,則CD的長為(

)A.7 B.8 C.9 D.10【答案】D【解析】【分析】利用8字模型的相似三角形證明△AOB∽△DOC,然后利用相似三角形的性質(zhì)即可解答.【詳解】解:∵AB∥CD,∴∠A=∠D,∠B=∠C,∴△AOB∽△DOC,∴SKIPIF1<0,∴SKIPIF1<0,∴CD=10,故選:D.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì),熟練掌握8字模型的相似三角形是解題的關(guān)鍵.2.(2022·江蘇省南京二十九中教育集團(tuán)致遠(yuǎn)中學(xué)九年級(jí)期末)如圖,D,E分別是△ABC的邊AB,AC上的點(diǎn),SKIPIF1<0=SKIPIF1<0,DE∥BC,若ΔADE的面積為6,則ΔABC的面積等于(

)A.12 B.18 C.24 D.54【答案】D【解析】【分析】根據(jù)相似三角形的判定定理可得ΔADE~ΔABC,利用其性質(zhì),相似三角形的面積比等于相似比的平方即可得出ΔABC的面積.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故答案選:D.【點(diǎn)睛】本題主要考查相似三角形的判定和性質(zhì),掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.3.(2022·廣西平桂·九年級(jí)期末)如圖,以點(diǎn)O為位似中心,將△OAB放大后得到△OCD,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則線段BD長為(

)A.SKIPIF1<0 B.6 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】根據(jù)位似變換可知SKIPIF1<0,得出SKIPIF1<0,代入數(shù)據(jù)得出OD的長,從而可求出BD的長.【詳解】根據(jù)題意可知SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故選:C.【點(diǎn)睛】本題考查位似變換的性質(zhì),三角形相似的性質(zhì).掌握位似的兩個(gè)三角形相似是解題關(guān)鍵.4.(2021·廣東禪城·二模)如圖,A、B分別為反比例函數(shù)SKIPIF1<0(x<0),y=SKIPIF1<0(x>0)圖象上的點(diǎn),且OA⊥OB,則tan∠ABO的值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】如圖,過A作AC⊥x軸于C,過B作BD⊥x軸于D,根據(jù)A、B在函數(shù)圖象上可求出S△AOC=4,S△BDO=9,根據(jù)相似三角形的判定得出△BDO∽△OCA,根據(jù)相似三角形的性質(zhì)得出,SKIPIF1<0,求出SKIPIF1<0的值,根據(jù)SKIPIF1<0即可求出角的正切值.【詳解】解:如圖,過A作AC⊥x軸于C,過B作BD⊥x軸于D則∠BDO=∠ACO=90°∵A、B分別為反比例函數(shù)SKIPIF1<0(x<0),SKIPIF1<0(x>0)圖象上的點(diǎn)∴S△AOC=4,S△BDO=9∵∠AOB=90°∴∠BOD+∠DBO=∠BOD+∠AOC=90°∴∠DBO=∠AOC∴△BDO∽△OCA∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0故選:A.【點(diǎn)睛】本題考查了三角形相似的判定與性質(zhì),反比例函數(shù),正切.解題的關(guān)鍵在于對(duì)知識(shí)的靈活運(yùn)用.5.(2021·廣東龍門·三模)如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A的坐標(biāo)為(SKIPIF1<0,0),頂點(diǎn)D的坐標(biāo)為(0,SKIPIF1<0),延長CB交x軸于點(diǎn)A1,作正方形A1B1C1C,延長C1B1交x軸于點(diǎn)A2,作正方形A2B2C2C1,……,按這樣的規(guī)律進(jìn)行下去,第2021個(gè)正方形的邊長為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】根據(jù)相似三角形的判定定理,得出SKIPIF1<0,繼而得知SKIPIF1<0,利用勾股定理計(jì)算出正方形的邊長,從中找出規(guī)律,問題也就迎刃而解了.【詳解】解:根據(jù)題意,得:SKIPIF1<02,SKIPIF1<0(兩直線平行,同位角相等).SKIPIF1<0,SKIPIF1<0,SKIPIF1<0頂點(diǎn)SKIPIF1<0的坐標(biāo)為(SKIPIF1<0,0),頂點(diǎn)D的坐標(biāo)為(0,SKIPIF1<0),∴OASKIPIF1<0,ODSKIPIF1<0,在直角SKIPIF1<0中,根據(jù)勾股定理得SKIPIF1<0,∴AD=AB=1,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,同理得:SKIPIF1<0,??????第2021個(gè)正方形的邊長為SKIPIF1<0,故選:B.【點(diǎn)睛】本題綜合考查了相似三角形的判定、勾股定理、解直角三角形,正方形的性質(zhì)等知識(shí)點(diǎn),另外在解題過程中,要認(rèn)真挖掘題中隱藏的規(guī)律,這樣可以降低解題的難度,提高解題效率.二、填空題6.(2021·廣東·東莞市石龍第二中學(xué)模擬預(yù)測(cè))如圖,在△ABC中,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),若△ABC的面積為4,則四邊形BCED的面積為___.【答案】3【解析】【分析】由題意知SKIPIF1<0是SKIPIF1<0的中位線,有SKIPIF1<0,從而得SKIPIF1<0,有SKIPIF1<0,求出SKIPIF1<0的值,對(duì)SKIPIF1<0計(jì)算求解即可.【詳解】解:由題意知SKIPIF1<0是SKIPIF1<0的中位線∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0故答案為:3.【點(diǎn)睛】本題考查了中位線,相似三角形的性質(zhì).解題的關(guān)鍵在于明確相似三角形的面積比等于相似比的平方.7.(2022·內(nèi)蒙古包頭·九年級(jí)期末)如圖,△ABC中,AB=AC,∠B=72°,∠ACB的角平分線CD交AB于點(diǎn)D.若AC=2,則CB=_____.【答案】SKIPIF1<0##SKIPIF1<0【解析】【分析】根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理可得∠ACB=∠B=72°,∠A=36°,根據(jù)角平分線的定義可得∠ACD=∠BCD=36°,根據(jù)三角形外角性質(zhì)可得∠CDB=72°,可得AD=CD,CD=BC,△BDC∽△BCA,設(shè)BC=x,根據(jù)相似三角形的性質(zhì)列方程求出x的值即可得答案.【詳解】∵AB=AC,∠B=72°,∴∠ACB=∠B=72°,∠A=180°-2∠B=36°,∵∠ACB的角平分線CD交AB于點(diǎn)D.∴∠ACD=∠BCD=36°,∴∠CDB=∠ACD+∠A=72°,∴AD=CD,CD=BC,∵∠BCD=∠A=36°,∠B=∠B,∴△BDC∽△BCA,設(shè)BC=x,∴CD=BC=x,∴SKIPIF1<0,即SKIPIF1<0,解得:x=SKIPIF1<0,(負(fù)值舍去)故答案為:SKIPIF1<0【點(diǎn)睛】本題考查等腰三角形的性質(zhì)及相似三角形的判定與性質(zhì),熟練掌握相關(guān)性質(zhì)及判定定理是解題關(guān)鍵.8.(2022·山東嶗山·九年級(jí)期末)如圖,在?ABCD中,AB=6,AD=8,∠ADC的平分線交BC于點(diǎn)F,交AB的延長線于點(diǎn)G,過點(diǎn)C作CE⊥DG,垂足為E,CE=2,則△BFG的周長為______.【答案】SKIPIF1<0【解析】【分析】首先利用已知條件可證明△CDF是等腰三角形,根據(jù)等腰三角形“三線合一”的性質(zhì)得出DF=2DE,而在Rt△CDE中,由勾股定理可求得DE的值,即可求得DF的長,從而求出△CFD的周長;然后,證明△CDFSKIPIF1<0△BFG,然后根據(jù)周長比等于相似比即可得到答案.【詳解】解:∵SKIPIF1<0是∠ADC的平分線∴SKIPIF1<0SKIPIF1<0四邊形SKIPIF1<0是平行四邊形SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0中SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0的周長為SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0的周長為SKIPIF1<0故答案為:SKIPIF1<0【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),相似三角形的判定與性質(zhì),勾股定理等知識(shí),熟練運(yùn)用以上知識(shí)是解題的關(guān)鍵.9.(2022·山西太原·九年級(jí)期末)如圖,在平面直角坐標(biāo)系中,矩形ABCD的頂點(diǎn)A,C分別在x軸的負(fù)半軸上,y軸的正半軸上,y軸平分AB邊,點(diǎn)A的坐標(biāo)(﹣2,0),AB=5.過點(diǎn)D的反比例函數(shù)的表達(dá)式是_____.【答案】SKIPIF1<0【解析】【分析】過點(diǎn)SKIPIF1<0作SKIPIF1<0軸于點(diǎn)SKIPIF1<0,設(shè)SKIPIF1<0與SKIPIF1<0軸的交點(diǎn)為點(diǎn)SKIPIF1<0,先根據(jù)相似三角形的判定證出SKIPIF1<0,根據(jù)相似三角形的性質(zhì)可得SKIPIF1<0,從而可得SKIPIF1<0,再根據(jù)相似三角形的判定證出SKIPIF1<0,根據(jù)相似三角形的性質(zhì)可得SKIPIF1<0,從而可得出點(diǎn)SKIPIF1<0的坐標(biāo),然后利用待定系數(shù)法即可得.【詳解】解:如圖,過點(diǎn)SKIPIF1<0作SKIPIF1<0軸于點(diǎn)SKIPIF1<0,設(shè)SKIPIF1<0與SKIPIF1<0軸的交點(diǎn)為點(diǎn)SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是矩形,SKIPIF1<0,SKIPIF1<0軸平分SKIPIF1<0邊,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0軸,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)過點(diǎn)SKIPIF1<0的反比例函數(shù)的表達(dá)式為SKIPIF1<0,將點(diǎn)SKIPIF1<0代入得:SKIPIF1<0,則過點(diǎn)SKIPIF1<0的反比例函數(shù)的表達(dá)式為SKIPIF1<0,故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查了求反比例函數(shù)的解析式、相似三角形的判定與性質(zhì)、矩形的性質(zhì)等知識(shí)點(diǎn),通過作輔助線,構(gòu)造相似三角形是解題關(guān)鍵.10.(2022·河北·石家莊市第二十八中學(xué)九年級(jí)期末)如圖,為一塊鐵板余料,BC=10cm,高AD=10cm,要用這塊余料裁出一個(gè)矩形PQMN,使矩形的頂點(diǎn)P、N分別在邊AB,AC上.頂點(diǎn)Q,M在邊BC上,則矩形PQMN面積的最大值為_____.【答案】25【解析】【分析】設(shè)DE=x,根據(jù)矩形的性質(zhì)得到SKIPIF1<0,PQ=MN=DE,證明△APN∽△ABC,得到SKIPIF1<0,求出PN=10-x得到矩形的面積,根據(jù)二次函數(shù)的性質(zhì)求解.【詳解】解:設(shè)DE=x,∵四邊形PQMN是矩形,AD⊥BC,∴SKIPIF1<0,PQ=MN=DE,∴△APN∽△ABC,∴SKIPIF1<0,∴SKIPIF1<0,∴PN=10-x,∴矩形PQMN面積=SKIPIF1<0,∴當(dāng)x=5時(shí),矩形PQMN面積有最大值,最大值為25cm2,故答案為:25..

【點(diǎn)睛】此題考查了矩形的性質(zhì),相似三角形的判定及性質(zhì),二次函數(shù)的最值,正確掌握相似三角形的判定及性質(zhì)定理是解題的關(guān)鍵.三、解答題11.(2022·江蘇溧水·九年級(jí)期末)折疊矩形ABCD,使點(diǎn)D落在BC邊上的點(diǎn)F處,折痕為AE.(1)求證△ABF∽△FCE;(2)若CF=4,EC=3,求矩形ABCD的面積.【答案】(1)見解析(2)矩形ABCD的面積為80【解析】【分析】(1)根據(jù)矩形的性質(zhì)和翻折的性質(zhì)即可證明△ABF∽△FCE.(2)由(1)得△ABF∽△FCE,所以SKIPIF1<0,進(jìn)而可以解決問題.(1)證明:由矩形ABCD可得,∠B=∠C=∠D=90°.∴∠BAF+∠AFB=90°.由折疊得∠AFE=∠D=90°.∴∠AFB+∠EFC=90°.∴∠BAF=∠EFC.∴△ABF∽△FCE;(2)解:∵CF=4,EC=3,∠C=90°∴EF=DE=5,∴AB=CD=8.由(1)得△ABF∽△FCE,∴SKIPIF1<0∴BF=6.∴BC=10.∴S=AB?CB=10×8=80.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì),矩形的性質(zhì),翻折變換,解決本題的關(guān)鍵是得到△ABF∽△FCE.12.(2022·湖北硚口·九年級(jí)期末)如圖,在△ABC和△AED中,AB=AC,AE=AD,∠BAC=∠EAD=90°,點(diǎn)G、F分別是ED、BC的中點(diǎn),連接CD、BE、GF.(1)求證:∠ACD=∠ABE;(2)求SKIPIF1<0的值;(3)若四邊形BEDC的面積為42,周長為SKIPIF1<0,GF=5,則AB=.【答案】(1)見解析(2)SKIPIF1<0(3)10【解析】【分析】(1)由題意得SKIPIF1<0和SKIPIF1<0都是等腰直角三角形,則SKIPIF1<0,根據(jù)SAS證明SKIPIF1<0,即可得;(2)連接AG,AF,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,根據(jù)角之間的關(guān)系得SKIPIF1<0,即可得SKIPIF1<0,根據(jù)相似三角形的性質(zhì)即可得;(3)由GF=5得SKIPIF1<0,根據(jù)四邊形的周長可得SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,根據(jù)SKIPIF1<0,SKIPIF1<0設(shè)BC=a,ED=b,列方程SKIPIF1<0,進(jìn)行計(jì)算得SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,即可得SKIPIF1<0.(1)證明:∵AB=AC,AE=AD,SKIPIF1<0,∴SKIPIF1<0和SKIPIF1<0都是等腰直角三角形,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0(SAS),∴SKIPIF1<0.(2)解:如圖,連接AG,AF,∵SKIPIF1<0和SKIPIF1<0都是等腰直角三角形,且點(diǎn)G,F(xiàn)分別是ED,BC的中點(diǎn),∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.(3)解:∵GF=5,∴SKIPIF1<0,由(1)SKIPIF1<0可知,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0=SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,設(shè)BC=a,ED=b,∴SKIPIF1<0由②得,SKIPIF1<0③,將③代入①得,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0解得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故答案為:10.【點(diǎn)睛】本題考查了等腰三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),解題的關(guān)鍵是掌握這些知識(shí)點(diǎn).13.(2022·四川成都·九年級(jí)期末)如圖1,在矩形ABCD中,點(diǎn)E是CD上一動(dòng)點(diǎn),連接AE,將△ADE沿AE折疊,點(diǎn)D落在點(diǎn)F處,AE與DF交于點(diǎn)O.(1)射線EF經(jīng)過點(diǎn)B,射線DF與BC交于點(diǎn)G.ⅰ)求證:△ADE∽△DCG;ⅱ)若AB=10,AD=6,求CG的長;(2)如圖2,射線EF與AB交于點(diǎn)H,射線DF與BC交于點(diǎn)G,連接HG,若HG∥AE,AD=10,DE=5,求CE的長.【答案】(1)ⅰ)見解析;ⅱ)SKIPIF1<0(2)9【解析】【分析】(1)i)根據(jù)翻折的性質(zhì)和相似三角形的判定解答即可;ii)根據(jù)勾股定理和相似三角形的性質(zhì)得出比例解答即可;(2)根據(jù)相似三角形的判定和性質(zhì)以及勾股定理解得即可.(1)解:i)由翻折可得,△ADE≌△AFE,DF⊥AE于O,∴∠ADO+∠EAD=90o,∵四邊形ABCD是矩形,∴∠ADC=∠CDG+∠ADO=90o,∴∠CDG=∠EAD,∵∠ADE=∠DCG=90o,∴△ADE∽△DCG;ii)∵四邊形ABCD是矩形,∴∠ADE=90o,∵△ADE≌△AFE,∴∠AFE=∠ADE=90o,AF=AD=6,∴∠AFB=90o,∴在Rt△ABF中,BF=SKIPIF1<0,設(shè)DE=EF=x,CE=10﹣x,BC=AD=6,在Rt△BCE中,BE2=BC2+CE2,即(8+x)2=62+(10﹣x)2,解得:x=2,由i)可知△ADE∽△DCG,∴SKIPIF1<0,∴SKIPIF1<0,解得:CG=SKIPIF1<0;(2)解:由i)可知,△ADE∽△DCG,∴SKIPIF1<0=2,∠OAD=∠ODE,∵△ADE≌△AFE,∴AD=AF,DE=FE,∴DF⊥AE,∴∠DOE=∠FOE=90°,∵∠OAD=∠ODE,∠ADE=∠DOE=90°,∴△ADE∽△DOE,∴SKIPIF1<0,∵HG∥AE,∴∠OEF=∠GHF,∵∠OFE=∠GFH,∴△HGF∽△EOF,∴SKIPIF1<0,∠HGF=∠EOF=90°,∴∠BGH+∠CGD=90°,∵在矩形ABCD中,∠B=90°,∴∠BHG+∠BGH=90°,∴∠CGD=∠BHG,∵∠B=∠C=90°,∴△BHG∽△CGD,∴SKIPIF1<0,∴△BHG∽△CGD∽△DEA∽△OED∽△GHF,設(shè)CE=x,DC=5+x,CG=SKIPIF1<0,BG=10﹣CG=10﹣SKIPIF1<0,BH=SKIPIF1<0BG=SKIPIF1<0,HG=SKIPIF1<0BH=SKIPIF1<0,∵HG:GF=1:2,∴GF=SKIPIF1<0,在△ADE中,AD=10,DE=5,AE=5SKIPIF1<0,DO=SKIPIF1<0,∵SKIPIF1<0,∵SKIPIF1<0,∴OE=SKIPIF1<0,DO=OF=2SKIPIF1<0,在△DCG中,DC=5+x,CG=SKIPIF1<0,DG=DF+FG=4SKIPIF1<0,∵SKIPIF1<0,∴DG=SKIPIF1<0CG,即SKIPIF1<0,解得:x=9,即CE=9.【點(diǎn)睛】此題考查相似三角形的綜合題,關(guān)鍵是根據(jù)相似三角形的判定和性質(zhì)以及勾股定理解答.14.(2021·山東濟(jì)陽·九年級(jí)期中)(1)問題如圖1,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),當(dāng)SKIPIF1<0時(shí),求證:SKIPIF1<0.(2)探究若將90°角改為銳角或鈍角(如圖2),其他條件不變,上述結(jié)論還成立嗎?說明理由.(3)應(yīng)用如圖3,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,以點(diǎn)A為直角頂點(diǎn)作等腰SKIPIF1<0.點(diǎn)D在BC上,點(diǎn)E在AC上,點(diǎn)F在BC上,且SKIPIF1<0,若SKIPIF1<0,求CD的長.【答案】(1)見解析;(2)成立,理由見解析;(3)SKIPIF1<0【解析】【分析】(1)由∠DPC=∠A=B=90°,可得∠ADP=∠BPC,即可證到△ADPSKIPIF1<0△BPC,然后運(yùn)用相似三角形的性質(zhì)即可解決問題;(2)由∠DPC=∠A=∠B=α,可得∠ADP=∠BPC,即可證到△ADPSKIPIF1<0△BPC,然后運(yùn)用相似三角形的性質(zhì)即可解決問題;(3)先證△ABDSKIPIF1<0△DFE,求出DF=4,再證△EFCSKIPIF1<0△DEC,可求FC=1,進(jìn)而解答即可.【詳解】(1)證明:如題圖1,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠ADP=∠BPC,∴△ADPSKIPIF1<0△BPC,SKIPIF1<0,∴ADSKIPIF1<0BC=APSKIPIF1<0BP,(2)結(jié)論仍然成立,理由如下,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴ADSKIPIF1<0BC=APSKIPIF1<0BP,(3)SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0是等腰直角三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【點(diǎn)睛】本題考查相似三角形的綜合題,三角形的相似;能夠通過構(gòu)造45°角將問題轉(zhuǎn)化為一線三角是解題的關(guān)鍵.15.(2022·山東歷下·九年級(jí)期末)如圖1,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0為斜邊SKIPIF1<0上一點(diǎn),過點(diǎn)SKIPIF1<0作射線SKIPIF1<0,分別交SKIPIF1<0、SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0.(1)問題產(chǎn)生若SKIPIF1<0為SKIPIF1<0中點(diǎn),當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0______;(2)問題延伸在(1)的情況下,將若SKIPIF1<0繞著點(diǎn)SKIPIF1<0旋轉(zhuǎn)到圖2的位置,SKIPIF1<0的值是否會(huì)發(fā)生改變?如果不變,請(qǐng)證明;如果改變,請(qǐng)說明理由;(3)問題解決如圖3,連接SKIPIF1<0,若SKIPIF1<0與SKIPIF1<0相似,求SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)不改變,SKIPIF1<0,證明見解析(3)SKIPIF1<0或SKIPIF1<0【解析】【分析】(1)連接SKIPIF1<0,根據(jù)題意可得SKIPIF1<0,證明四邊形SKIPIF1<0是矩形,可得SKIPIF1<0,進(jìn)而求得SKIPIF1<0的長,即可求得SKIPIF1<0;(2)作SKIPIF1<0,SKIPIF1<0,分別交SKIPIF1<0、SKIPIF1<0于點(diǎn)SKIPIF1<0、SKIPIF1<0,證明SKIPIF1<0,可得SKIPIF1<0,根據(jù)(1)的結(jié)論即可解決問題;(3)作SKIPIF1<0,SKIPIF1<0,分別交SKIPIF1<0、SKIPIF1<0于點(diǎn)SKIPIF1<0、SKIPIF1<0,證明SKIPIF1<0,可得SKIPIF1<0;①若SKIPIF1<0可得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,根據(jù)SKIPIF1<0求得SKIPIF1<0,進(jìn)而求得SKIPIF1<0,證明SKIPIF1<0,可得SKIPIF1<0,代入數(shù)值求解即可;②若SKIPIF1<0,根據(jù)SKIPIF1<0,同理求得SKIPIF1<0,代入SKIPIF1<0求解即可.(1)如圖,連接SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0為SKIPIF1<0中點(diǎn),SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0四邊形SKIPIF1<0是矩形SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)不改變,SKIPIF1<0;證明:作SKIPIF1<0,SKIPIF1<0,分別交SKIPIF1<0、SKIPIF1<0于點(diǎn)SKIPIF1<0、SKIPIF1<0∴四邊形PMCN是矩形,SKIPIF1<0SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0又∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0由(1)得SKIPIF1<0∴SKIPIF1<0(3)作SKIPIF1<0,SKIPIF1<0,分別交SKIPIF1<0、SKIPIF1<0于點(diǎn)SKIPIF1<0、SKIPIF1<0又SKIPIF1<0SKIPIF1<0四邊形SKIPIF1<0為矩形,∵SKIPIF1<0∴SKIPIF1<0又∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0①若SKIPIF1<0可得SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0四邊形SKIPIF1<0為矩形,所以SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,解得SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0,解得SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,即SKIPIF1<0解得SKIPIF1<0②若SKIPIF1<0可得SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0為矩形,所以SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,解得SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0,解得SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,即SKIPIF1<0解得SKIPIF1<0【點(diǎn)睛】本題考查了矩形的性質(zhì)與判定,等角的余角相等,等腰三角形的性質(zhì),直角三角形的中線性質(zhì),旋轉(zhuǎn)性質(zhì),銳角三角函數(shù),相似三角形的性質(zhì)與判定,掌握相似三角形的性質(zhì)與判定是解題的關(guān)鍵.16.(2022·江蘇廣陵·九年級(jí)期末)已知四邊形ABCD中,E,F(xiàn)分別是AB,AD邊上的點(diǎn),DE與CF交于點(diǎn)G.(1)觀察猜想:如圖①,如果四邊形ABCD是正方形,當(dāng)E、F分別是AB、AD的中點(diǎn)時(shí),則DE與CF的數(shù)量關(guān)系為:,位置關(guān)系為:.(2)探究證明:如圖②,若四邊形ABCD是矩形,且DE⊥CF.求證:SKIPIF1<0.(3)拓展延伸:如圖③,若四邊形ABCD是平行四邊形,試探究:當(dāng)∠B與∠EGC滿足什么關(guān)系時(shí),使得SKIPIF1<0成立?并證明你的結(jié)論.【答案】(1)DE=CF,DE⊥CF(2)見解析(3)當(dāng)∠B+∠EGC=180°時(shí),SKIPIF1<0成立,證明見解析【解析】【分析】(1)先判斷出AE=DF,進(jìn)而得出△ADE≌△DCF(SAS),即可得出結(jié)論;(2)根據(jù)矩形性質(zhì)得出∠A=∠FDC=90°,求出∠CFD=∠AED,證出△AED∽△DFC即可得結(jié)論;(3)當(dāng)∠B+∠EGC=180°時(shí),DE?CD=CF?AD成立,證△DFG∽△DEA,得出SKIPIF1<0,證△CGD∽△CDF,得出SKIPIF1<0,即可得出答案.(1)解:∵四邊形ABCD是正方形,∴∠A=∠ADC=90°,AD=AB=CD,∵點(diǎn)E,F(xiàn)是AB,AD的中點(diǎn),∴AE=SKIPIF1<0AB,DF=SKIPIF1<0AD,∴AE=DF,在△ADE和△DCF中,SKIPIF1<0,∴△ADE≌△DCF(SAS),∴DE=CF,∠AED=∠DFC,∵∠AED+∠ADE=90°,∴∠ADE+∠DFC=90°,∴∠DGF=90°,∴DE⊥CF,故答案為:DE=CF,DE⊥CF;(2)證明:∵四邊形ABCD是矩形,∴∠A=∠FDC=90°,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED∽△DFC,∴SKIPIF1<0;(3)當(dāng)∠B+∠EGC=180°時(shí),SKIPIF1<0成立.證明:∵四邊形ABCD是平行四邊形,∴∠B=∠ADC,AD∥BC,∴∠B+∠A=180°,∵∠B+∠EGC=180°,∴∠A=∠EGC=∠FGD,∵∠FDG=∠EDA,∴△DFG∽△DEA,∴SKIPIF1<0,∵∠B=∠ADC,∠B+∠EGC=180°,∠EGC+∠DGC=180°,∴∠CGD=∠CDF,∵∠GCD=∠DCF,∴△CGD∽△CDF,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即當(dāng)∠B+∠EGC=180°時(shí),SKIPIF1<0成立.【點(diǎn)睛】本題屬于相似形綜合題,考查了矩形性質(zhì)和判定,勾股定理,平行四邊形的性質(zhì)和判定,相似三角形的性質(zhì)和判定的應(yīng)用,主要考查學(xué)生綜合運(yùn)用性質(zhì)和定理進(jìn)行推理的能力.17.(2022·山東天橋·九年級(jí)期末)(1)如圖1,正方形ABCD與調(diào)研直角△AEF有公共頂點(diǎn)A,∠EAF=90°,連接BE、DF,將△AEF繞點(diǎn)A旋轉(zhuǎn),在旋轉(zhuǎn)過程中,直線BE、DF相交所成的角為β,則SKIPIF1<0=________;β=________;(2)如圖2,矩形ABCD與Rt△AEF有公共頂點(diǎn)A,∠EAF=90°,且AD=2AB,AF=2AE,連接BE、DF,將Rt△AEF繞點(diǎn)A旋轉(zhuǎn),在旋轉(zhuǎn)過程中,直線BE、DF相交所成的角為β,請(qǐng)求出SKIPIF1<0的值及β的度數(shù),并結(jié)合圖2進(jìn)行說明;(3)若平行四邊形ABCD與△AEF有公共項(xiàng)點(diǎn)A,且∠BAD=∠EAF=α(0°<α<180°),AD=kAB,AF=kAE(k≠0),將△AEF繞點(diǎn)A旋轉(zhuǎn),在旋轉(zhuǎn)過程中,直線BE、DF相交所成的銳角的度數(shù)為β,則:①SKIPIF1<0=________;②請(qǐng)直接寫出α和β之間的關(guān)系式.【答案】(1)1,90°;(2)SKIPIF1<0,90°;(3)①SKIPIF1<0;②α+β=180°【解析】【分析】(1)根據(jù)旋轉(zhuǎn)的過程中線段的長度不變,得到AF=AE,又∠BAE與∠DAF都與∠BAF互余,所以∠BAE=∠DAF,所以△FAD≌△EAB,因此BE與DF相等,延長DF交BE于G,根據(jù)全等三角形的對(duì)應(yīng)角相等和四邊形的內(nèi)角和等于360°求出∠EGF=90°,所以DF⊥BE;(2)等同(1)的方法,因?yàn)榫匦蔚泥忂叢幌嗟?,但根?jù)題意,可以得到對(duì)應(yīng)邊成比例,所以△FAD∽△EAB,所以DF=2BE,同理,根據(jù)相似三角形的對(duì)應(yīng)角相等和四邊形的內(nèi)角和等于360°求出∠EHF=90°,所以DF⊥BE;(3)與(2)的證明方法相同,但根據(jù)相似三角形的對(duì)應(yīng)角相等和四邊形的內(nèi)角和等于360°求出∠EAF+∠EHF=180°.【詳解】解:(1)如圖1,延長DF分別交BE于點(diǎn)G,在正方形ABCD和等腰直角△AEF中,AD=AB,AF=AE,∠BAD=∠EAF=90°,∴∠FAD=∠EAB,∴△FAD≌△EAB(SAS),∴∠AFD=∠AEB,DF=BE,∵∠AFD+∠AFG=180°,∴∠AEG+∠AFG=180°,∵∠EAF=90°,∴∠EGF=180°-90°=90°,∴DF⊥BE,∴SKIPIF1<0=1,β=90°,故答案為:1,90°;(2)如圖2,延長DF交EB于點(diǎn)H,∵AD=2AB,AF=2AE,∴SKIPIF1<0,∵∠BAD=∠EAF=90°,∴∠FAD=∠EAB,∴△FAD∽△EAB,∴SKIPIF1<0,∴DF=2BE,∵△FAD∽△EAB,∴∠AFD=∠AEB,∵∠AFD+∠AFH=180°,∴∠AEH+∠AFH=180°,∵∠EAF=90°,∴∠EHF=180°-90°=90°,∴DF⊥BE,∴SKIPIF1<0,β=90°;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論