版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
本文格式為Word版,下載可任意編輯——量子化學(xué)課程習(xí)題及標(biāo)準(zhǔn)答案
?(x,y,z)]?x?(x,y,z)?V?(x,y,z)x?,V?V??0[x
e)
1????????,[x,H]?[x,T?V]?[x,T]?[x2m
f)
??y?z?]?2?y?z?,p?[x?x2x2Chapter04
1:Theone-dimensionalharmonic-oscillatorisatitsfirstexcitedstateanditswavefunctionisgivenas
?1(x)?2(?)3/412xexp(??x)1/42(?)
pleaseevaluatetheexpectationvalues
(averagevalues)ofkineticenergy(T),potentialenergy(V)andthetotalenergy.
Answer:1)Firstofall,checkthenormalizationpropertyofthewavefunction.
2)Evaluatetheexpectationvalueofkineticenergy.
3)Evaluatetheexpectationvalueofpotentialenergy
4)TotalEnergy=T+V
2.Theone-dimensionalharmonic-oscillatorHamiltonianis
?p222??H??2?vmx2mTheraisingandloweringoperatorsforthis
problemaredefinedas
2x??A?1??[p?2?ivmx]x1/2,(2m)??A?Showthat
1??[p?2?ivmx]x1/2(2m),
?A??H??1hvA??2??A??H??1hvA??2?,A?]??hv,[A???]??hvA??,A,[H?andA?areindeedladderShowthatAoperatorsandthattheeigenvaluesarespacedatintervalsofhv.Sinceboththekineticenergyandthepotentialenergyarenonnegative,weexpecttheenergyeigenvaluestobenonnegative.Hencetheremustbeastateofminimumenergy.Operateonthewave
?andthenfunctionforthisstatefirstwithA?andshowthatthelowestenergywithA?]?hvA??,A[H???????eigenvalueis
1hv2.Finally,concludethat,n=0,1,2,…
1E?(n?)hv2Answer:
1)Writedownthedefinitionofoperator
d?x??i?pdx
2)Expandtheoperatorsinfullform.
?d222?H???2?vmx22mdx1dA??[?i??2?vmxi]dx2m1dA??[?i??2?vmxi]dx2m3)Evaluatethecorrespondingcombinationof
operators
22
1d1dA?A??[?i??2?vmxi][?i??2?vmxi]dxdx2m2m1ddd?[?i?[?i??2?vmxi]?2?vmxi[?i??2?vmxi]]2mdxdxdx21ddd22222?[???2?vm??2?vm?x?2?vmx??4?vmx]22mdxdxdx21d22222?[???2?vm??4?vmx]22mdx?2d211222????2?vmx?hv?H?hv22mdx221d1dA?A??[?i??2?vmxi][?i??2?vmxi]dxdx2m2m1ddd?[?i?[?i??2?vmxi]?2?vmxi[?i??2?vmxi]]2mdxdxdx21dd2d2222?[???2?vm??2?vm?x?2?vmx??4?vmx]22mdxdxdx22?d11222????2?vmx?hv?H?hv22mdx2222?d1d222?HA??[??2?vmx][?i??2?vmxi]22mdxdx2m221?ddd222?[?[?i??2?vmxi]?2?vmx[?i??2?vmxi]]2dxdx2m2mdx3321i?ddd2d222233?[?2?v?i??v?ix?2?vmxi??4?v32dxdxdx2m2mdx221d?d222??A?H[?i??2?vmxi][??2?vmx]2dx2mdx2m21i?3d3dd2222223?[?4?vmxi??2?vmxi???v?ix?4?v32dxdx2m2mdx11d2d22[?2?v?i?4?vmxi?]?hv[?i?]?dx2m2mdx11d1hv[2?vmxi]?hv[?i??2?vmxi]?hvA?2m2mdx2m?A?AH??H??
Inthesamemanner,wecanget
?A?AH??hvAH???4)SubstitutingtheabovecommunicatorsintotheSchroeidngerequation,weget
???E?H?A??[AH??hvA]??AE??hvA??(E?hv)A?H???????A??[AH??hvA]??AE??hvA??(E?hv)A?H??????
?andA?areindeedladderThisshowsthatAoperatorsandthattheeigenvaluesarespacedatintervalsofhv.
5)Supposethat?istheeigenfunctionwiththelowesteigenvalue.
?????E?Hlowest
AccordingtothedefinitionofA_operator,we
have
As?istheeigenfunctionwiththelowesteigenvalue,theaboveequationisfulfilledifandonlyif
?A??(E?hv)A?H??A???0
Operatingonthewavefunctionforthisstate?andthenwithA?leadstofirstwithA??11??hv]??H???hv?A?A???0?[H22
Therefore,thelowestenergyis1/2hv.
1?H??(n?hv)?,2n?0,1,2,3?
Chapter05
1.Forthegroundstateoftheone-dimensionalharmonicoscillator,computethestandarddeviations?xand?pxandcheckthattheuncertaintyprincipleisobeyed.Answer:
1)Thegroundstatewavefunctionoftheone-dimensionalharmonicoscillatorisgivenby
??(?)?e?14141??x22
2)Thestandarddeviations?xand?pxaredefinedas
?x?x22?x
2(?p)2?(?p)2??p2
Theproductof?xand?pisgivenby
?x?p?1????2?22???42
2Itshowsthattheuncertaintyprincipleis
obeyed.
2.(a)Showthatthethreecommutationrelations[L?,L?]=i?L?,[L?,L?]=i?L?,[L?,L?]=i?L?
??L??i?L?(b)areequivalenttothesinglerelationL?]?,LFind[LAnswer:1):
xyzyzxzxy2xy?????Li?Lj?LkLxyz????????L??(Li?Lj?Lk)?(Li?Lj?Lk)Lxyzxyz???????LxLyk?LxLzj?LyLxk?LyLzi?LzLxj?LzLyi????(LyLz?LzLy)i?(LzLx?LxLz)j?(LxLy?LyLx)k???????[Ly,Lz]i?[Lz,Lx]j?[Lx,Ly]k?i?(Lxi?Lyj?Lzk)[Lz,Lx]?i?Ly[Lx,Ly]?i?Lz?[Ly,Lz]?i?Lx
2):
[L2x,Ly]?Lx[Lx,Ly]?[Lx,Ly]Lx?Lx(i?Lz)?(i?Lz)Lx?i?(LxLz?LzLx)
3.CalculatethepossibleanglesbetweenLandthezaxisforl=2.
Answer:
ThepossibleanglesbetweenLandthezaxisareequivalenttheanglesbetweenLandLz.Hence,theanglesaregivenby:
L?2(2?1)??6?mzCos??L???
???35.26,65.91,90.00,114.10,144.7
4.
Complete
this
equation:
3m33m?LzYl?m?Yl
Chapter06
1.Explainwhyeachofthefollowingintegralsmustbezero,wherethefunctionsarehydrogenlikewavefunctions:(a);(b)Answer:
Both3p-1and3p0areeigenfunctionsofLz,witheigenvaluesof-1and0,respectively.Therefore,theaboveintegralscanbesimplifiedas
a)duetoorthogonalizationpropertiesofeigenfunctions?3p??12p|3p?02pLzz1z?11?1b)0
2.Useparitytofindwhichofthefollowingintegralsmustbezero:(a);(b)
2
;(c).Thefunctionsintheseintegralsarehydrogenlikewavefunctions.Answer:
1)b)andc)mustbezero.
3.Forahydrogenatominapstate,thepossibleoutcomesofameasurementofLzare–?,0,and?.Foreachofthefollowingwavefunctions,givetheprobabilitiesofeachofthesethreeresults:(a)?;(b)?;(c)?.Thenfindforeachofthesethreewavefunctions.
Answer:
a)?2p??2p,therefore,theprobabilitiesare:0%,100%,0%
2pz2py2p1z0?2px1?(?2p1??2p?1)2,theprobabilitiesare
50%,0%,50%.
?2p,theprobabilitiesare100%,0%,0%b)0,0,1
1/2
4.Ameasurementyields2?forthemagnitudeofaparticle’sorbitalangularmomentum.IfLxisnowmeasured,whatarethepossibleoutcomes?
1
Answer:
1):Sincethewavefunctionisthe
2
eigenfunctionofL,ameasurementofthemagnitudeoftheorbitalangularmomentumshouldbe
L(L?1)??2??L,
ThepossibleoutcomeswhenmeasureLxare-1,0,1
?1Chapter07
1.Whichofthefollowingoperatorsare
2222
Hermitian:d/dx,i(d/dx),4d/dx,i(d/dx)?Answer:
Anoperatorinone-DspaceisHermitianif
*???A?dx??(A?)dx??
*a)
d?*??dxdx???d*????(?)dxdx*???d?d????dx????dxdxdx**
b)
d?*??idxdx?i??d*???(i?)dxdx*?d?d??i??dx??i????dxd*c)
d?*d??4dx?4??dx2dx**2???d?d??4?dxdx*?*d?d?d???4?dx??4?dxdxdxd???4?dx2dx2*??d??4?d2
Thisoperatorcanbewrittenasaproductof1Dkineticoperatorandaconstant.Hence,it’sHermitian.
d)AsthethirdoperatorisHermitian,thisoperatorisnotHermitian.
?andB?areHermitianoperators,prove2.IfA?B?isHermitianifandonlythattheirproductA?andB?andB?commute.(b)IfA?areifA?B?)isHermitian.?+B?AHermitian,provethat1/2(A?Hermitian?(d)Is1/2(x?p?+p?x?)(c)Isx?pxxxHermitian?Answer:1)
IfoperatorAandBcommute,wehave
?B??A?B??0???B?A??B?AA*??????[(AB?BA)?]d??0
??B?)?]*d??0??B?A???[(A**???????[AB?]d????[BA?]d?
OperatorAandBareHermitian,wehave
??]*d??(A??)*(B?B?A??)d???*A??d????[B??Therefore,whenAandBcommute,the
followingequationfulfills.Namely,ABisalsoHermitian.
**??????[AB?]d????AB?d?
2)
1????1*??*???[(AB?BA)]?d??[?AB?d???BA?d?]?2??2*OperatorAandBareHermitian,weget
11*??*????)*d??A[??AB?d????BA?d?]?[??(B221????*?????(AB?)d????[(BA?AB)?]*d?21????*1??*?????(AB?BA)?d????[(AB?BA)?]d?22
Theaboveequationshowsthattheoperator1/2[AB+BA]isHermitian.
c)xpxisnotHermitiansincebothxandpxareHermitiananddonotcommute.d)Yes
Chapter08
1.Applythevariationfunction??e?crtothehydrogenatom;choosetheparameterctominimizethevariationalintegral,andcalculatethepercenterrorintheground-stateenergy.Solution:
1)Therequirementofthevariationfunctionbeingawell-behavedfunctionrequiresthatcmustbeapositivenumber.
2)checkthenormalizationofthevariationfunction.
???d???e??d??H?**?2cr2rdr?Sin(?)d??d???c
333)Thevariationintegralequalsto
121c12*w???(???)?d???(????*?2r?2??d??*c31?2??cr23?cr3?(?)?d???2c?e[(2?)e]rdr?4c??r?rr?r1?c(c?2)2*c32
4)Theminimumofthevariationintegralis
?w1?c?1?0?c?1?w???c2
5)Thepercenterrorinthegroundstateis0%
2.Ifthenormalizedvariationfunction??(3/l)xfor0≤x≤lisappliedtotheparticle-in-a-one-dimensional-boxproblem,onefindsthatthevariationintegralequalszero,whichislessthanthetrueground-stateenergy.Whatiswrong?Solution:
Thecorrecttrailvariationfunctionmustbesubjecttothesameboundaryconditionofthegivenproblem.Fortheparticleina1Dboxproblem,thecorrectwavefunctionmustequaltozeroatx=0andx=l.However,thetrialvariationfunction??(3/l)xdoesnotfulfilltheserequirement.Thevariationintegralbased
31/231/2onthisincorrectvariationfunctiondoesnotmakeanysense.
3.Applicationofthevariationfunction(wherecisavariationparameter)to
aproblemwithV=af(x),whereaisapositiveconstantandf(x)isacertainfunctionofx,givesthevariationintegralasW=c?2/2m
3
+15a/64c.FindtheminimumvalueofWforthisvariationfunction.Solution:
??e?cx2c?a5d(?15)()3a3?w2m64c2??0?c??1?cdc42m??wmin5()am?1332??0.72598a4m4?231414343221414
4.In1971apaperwaspublishedthatappliedthenormalizedvariationfunction
Nexp(-br2a02-cr/a0)tothehydrogenatomandstatedthatminimizationofthevariationintegralwithrespecttotheparametersbandcyieldedanenergy0.7%abovethetrueground-stateenergyforinfinitenuclearmass.Withoutdoinganycalculations,statewhythisresultmustbewrong.Solution:
Fromtheevaluationofexercise1,weknowthatthevariationfunctionexp(-cr)givesnoerrorinthegroundstateofhydrogenatom.ThisfunctionisaspecialcaseofthenormalizedvariationfunctionNexp(-br2a02-cr/a0)whenbequalstozero.Therefore,adoptingthenormalizedvariationfunctionasatrialvariationfunctionshouldalsohavenoerrorinthegroundstateenergyforhydrogenatom.
5.Provethat,forasystemwitha
??d??E,if?isnondegenerategroundstate,??Hanynormalized,well-behavedfunctionthatisnotequaltothetrueground-statewave
*0function.(E0isthelowest-energyeigenvalue
?)ofHSolution:
AstheeigenfunctionsoftheHermitianoperatorHformacompleteset,anywell-behavedfunctionwhichissubjecttothesameboundaryconditioncanbeexpandedasalinearcombinationoftheeigenfunctionoftheHermitianoperator,namely,
???ci?i,where?sareeigenfunctionsofi
i?0?HermitianoperatorH,cisareconstant.
Theexpectationvalueof???withrespecttotheHermitianoperatoris
*????*?*?*???H?d???(?ci?i)H?cj?jd???ci?cj??iH?i?0j?0i?0j?02??ci?02?*i?cE???ccE??cjjij*iiij?0i?0i?0?2?2i?1i?0???2iEi?c0E0??cii?1??c0E0??ciE0?E0?ci?E0
Chapter09,10
1.FortheanharmonicoscillatorwithHamiltonian
?2d1234?H???kx?cx?dx2mdx22,evaluateE(1)
forthefirstexcitedstate,takingtheunperturbedsystemastheharmonicoscillator.Solution:
Thewavefunctionofthefirstexcitedstateoftheharmonicoscillatoris
?1?(4?314?)xe??x22
Hence,thefirstordercorrecttoenergyofthefirstexcitedstateisgivenby
4?'???H?1dx??()xe*1314??x22?(c?x?d?x)(4?3344?3?)x14?(4?3?)12?xe2??x2d?xdx?d(4?)12?xe6??x215ddx?4?
2.Considertheone-particle,one-dimensionalsystemwithpotential-energyV=V0for
13l?x?l44,V=0for
0?x?1l4and
3l?x?l4
22andV=∞elsewhere,whereV0=?/ml.Treatthesystemasaperturb
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025寫字樓車位租賃合同范本
- 2024新高考地理一輪復(fù)習(xí)專題四自然環(huán)境的內(nèi)在規(guī)律與環(huán)境對人類的活動的影響高頻考點42自然災(zāi)害的成因及避災(zāi)防災(zāi)新人教版
- 2024高中地理課時作業(yè)1地理環(huán)境對區(qū)域發(fā)展的影響含解析新人教版必修3
- 2025年吐魯番道路貨運駕駛員從業(yè)資格證考試
- 2025廊坊市勞動合同范文
- 2025農(nóng)村房屋買賣合同協(xié)議模板
- 水溶性涂層膠行業(yè)深度研究報告
- 上海現(xiàn)代化工職業(yè)學(xué)院《工程實踐II》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海現(xiàn)代化工職業(yè)學(xué)院《報紙排版與設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海外國語大學(xué)賢達(dá)經(jīng)濟人文學(xué)院《巖體力學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 入世后黑色家電的產(chǎn)業(yè)分析與企業(yè)對策
- 2023年社?;鸢踩窘逃龑W(xué)習(xí)研討會發(fā)言稿報告(4篇)
- 6 電氣安全與靜電防護技術(shù)
- GB/T 4087-2009數(shù)據(jù)的統(tǒng)計處理和解釋二項分布可靠度單側(cè)置信下限
- GB/T 35679-2017固體材料微波頻段使用波導(dǎo)裝置的電磁參數(shù)測量方法
- 安全用電課件【知識精講+高效備課】 人教版九年級 物理教材精研課件
- 華中師范大學(xué)文學(xué)院《826語言文學(xué)綜合考試》考試大綱
- 國開電大《個人理財》形考任務(wù)1-3試題及答案
- 未成年人需辦銀行卡證明(模板)
- 高邊坡腳手架施工方案(修)
- 【畢業(yè)設(shè)計論文】基于plc的電機故障診斷系統(tǒng)設(shè)計
評論
0/150
提交評論