2022-2023學(xué)年湖北省當(dāng)陽市重點名校中考考前最后一卷數(shù)學(xué)試卷含解析_第1頁
2022-2023學(xué)年湖北省當(dāng)陽市重點名校中考考前最后一卷數(shù)學(xué)試卷含解析_第2頁
2022-2023學(xué)年湖北省當(dāng)陽市重點名校中考考前最后一卷數(shù)學(xué)試卷含解析_第3頁
2022-2023學(xué)年湖北省當(dāng)陽市重點名校中考考前最后一卷數(shù)學(xué)試卷含解析_第4頁
2022-2023學(xué)年湖北省當(dāng)陽市重點名校中考考前最后一卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖所示,把直角三角形紙片沿過頂點B的直線(BE交CA于E)折疊,直角頂點C落在斜邊AB上,如果折疊后得等腰△EBA,那么結(jié)論中:①∠A=30°;②點C與AB的中點重合;③點E到AB的距離等于CE的長,正確的個數(shù)是()A.0 B.1 C.2 D.32.若一個圓錐的底面半徑為3cm,母線長為5cm,則這個圓錐的全面積為()A.15πcm2 B.24πcm2 C.39πcm2 D.48πcm23.如圖,已知二次函數(shù)y=ax2+bx的圖象與正比例函數(shù)y=kx的圖象相交于點A(1,2),有下面四個結(jié)論:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正確的是()A.①② B.②③ C.①④ D.③④4.某一公司共有51名員工(包括經(jīng)理),經(jīng)理的工資高于其他員工的工資,今年經(jīng)理的工資從去年的200000元增加到225000元,而其他員工的工資同去年一樣,這樣,這家公司所有員工今年工資的平均數(shù)和中位數(shù)與去年相比將會()A.平均數(shù)和中位數(shù)不變 B.平均數(shù)增加,中位數(shù)不變C.平均數(shù)不變,中位數(shù)增加 D.平均數(shù)和中位數(shù)都增大5.如圖,從圓外一點引圓的兩條切線,,切點分別為,,如果,,那么弦AB的長是()A. B. C. D.6.下列事件中,必然事件是()A.拋擲一枚硬幣,正面朝上B.打開電視,正在播放廣告C.體育課上,小剛跑完1000米所用時間為1分鐘D.袋中只有4個球,且都是紅球,任意摸出一球是紅球7.下列說法中,正確的是()A.不可能事件發(fā)生的概率為0B.隨機事件發(fā)生的概率為C.概率很小的事件不可能發(fā)生D.投擲一枚質(zhì)地均勻的硬幣100次,正面朝上的次數(shù)一定為50次8.將函數(shù)的圖象用下列方法平移后,所得的圖象不經(jīng)過點A(1,4)的方法是()A.向左平移1個單位 B.向右平移3個單位C.向上平移3個單位 D.向下平移1個單位9.一個布袋內(nèi)只裝有1個黑球和2個白球,這些球除顏色不同外其余都相同,隨機摸出一個球后放回攪勻,再隨機摸出一個球,則兩次摸出的球都是黑球的概率是()A. B. C. D.10.從甲、乙、丙、丁四人中選一人參加詩詞大會比賽,經(jīng)過三輪初賽,他們的平均成績都是86.5分,方差分別是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你認(rèn)為派誰去參賽更合適()A.甲 B.乙 C.丙 D.丁二、填空題(本大題共6個小題,每小題3分,共18分)11.某校為了解本校九年級學(xué)生足球訓(xùn)練情況,隨機抽查該年級若干名學(xué)生進行測試,然后把測試結(jié)果分為4個等級:A、B、C、D,并將統(tǒng)計結(jié)果繪制成兩幅不完整的統(tǒng)計圖.該年級共有700人,估計該年級足球測試成績?yōu)镈等的人數(shù)為_____人.12.如圖是測量河寬的示意圖,AE與BC相交于點D,∠B=∠C=90°,測得BD=120m,DC=60m,EC=50m,求得河寬AB=______m.13.?dāng)?shù)學(xué)的美無處不在.?dāng)?shù)學(xué)家們研究發(fā)現(xiàn),彈撥琴弦發(fā)出聲音的音調(diào)高低,取決于弦的長度,繃得一樣緊的幾根弦,如果長度的比能夠表示成整數(shù)的比,發(fā)出的聲音就比較和諧.例如,三根弦長度之比是15:12:10,把它們繃得一樣緊,用同樣的力彈撥,它們將分別發(fā)出很調(diào)和的樂聲do、mi、so,研究15、12、10這三個數(shù)的倒數(shù)發(fā)現(xiàn):.我們稱15、12、10這三個數(shù)為一組調(diào)和數(shù).現(xiàn)有一組調(diào)和數(shù):x,5,3(x>5),則x的值是.14.如圖,一艘船向正北航行,在A處看到燈塔S在船的北偏東30°的方向上,航行12海里到達B點,在B處看到燈塔S在船的北偏東60°的方向上,此船繼續(xù)沿正北方向航行過程中距燈塔S的最近距離是_____海里(不近似計算).15.如圖Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB的中點,P是直線BC上一點,把△BDP沿PD所在直線翻折后,點B落在點Q處,如果QD⊥BC,那么點P和點B間的距離等于____.16.如圖,點A,B是反比例函數(shù)y=(x>0)圖象上的兩點,過點A,B分別作AC⊥x軸于點C,BD⊥x軸于點D,連接OA,BC,已知點C(2,0),BD=2,S△BCD=3,則S△AOC=__.三、解答題(共8題,共72分)17.(8分)某校數(shù)學(xué)綜合實踐小組的同學(xué)以“綠色出行”為主題,把某小區(qū)的居民對共享單車的了解和使用情況進行了問卷調(diào)查.在這次調(diào)查中,發(fā)現(xiàn)有20人對于共享單車不了解,使用共享單車的居民每天騎行路程不超過8千米,并將調(diào)查結(jié)果制作成統(tǒng)計圖,如下圖所示:本次調(diào)查人數(shù)共人,使用過共享單車的有人;請將條形統(tǒng)計圖補充完整;如果這個小區(qū)大約有3000名居民,請估算出每天的騎行路程在2~4千米的有多少人?18.(8分)對于平面直角坐標(biāo)系xOy中的點P和直線m,給出如下定義:若存在一點P,使得點P到直線m的距離等于1,則稱P為直線m的平行點.(1)當(dāng)直線m的表達式為y=x時,①在點,,中,直線m的平行點是______;②⊙O的半徑為,點Q在⊙O上,若點Q為直線m的平行點,求點Q的坐標(biāo).(2)點A的坐標(biāo)為(n,0),⊙A半徑等于1,若⊙A上存在直線的平行點,直接寫出n的取值范圍.19.(8分)如圖,在平面直角坐標(biāo)系中,已知△AOB是等邊三角形,點A的坐標(biāo)是(0,4),點B在一象限,點P(t,0)是x軸上的一個動點,連接AP,并把△AOP繞著點A按逆時針方向旋轉(zhuǎn),使邊AO與AB重合,連接OD,PD,得△OPD。(1)當(dāng)t=時,求DP的長(2)在點P運動過程中,依照條件所形成的△OPD面積為S①當(dāng)t>0時,求S與t之間的函數(shù)關(guān)系式②當(dāng)t≤0時,要使s=,請直接寫出所有符合條件的點P的坐標(biāo).20.(8分)如圖,某數(shù)學(xué)活動小組為測量學(xué)校旗桿AB的高度,沿旗桿正前方米處的點C出發(fā),沿斜面坡度的斜坡CD前進4米到達點D,在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),AB⊥BC,AB//DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈.計算結(jié)果保留根號)21.(8分)小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B、C兩點的俯角分別為45°、35°.已知大橋BC與地面在同一水平面上,其長度為100m,求熱氣球離地面的高度.(結(jié)果保留整數(shù))(參考數(shù)據(jù):sin35°=0.57,cos35°=0.82,tan35°=0.70)22.(10分)霧霾天氣嚴(yán)重影響市民的生活質(zhì)量。在今年寒假期間,某校九年級一班的綜合實踐小組學(xué)生對“霧霾天氣的主要成因”隨機調(diào)查了所在城市部分市民,并對調(diào)查結(jié)果進行了整理,繪制了下圖所示的不完整的統(tǒng)計圖表:組別霧霾天氣的主要成因百分比A工業(yè)污染45%B汽車尾氣排放C爐煙氣排放15%D其他(濫砍濫伐等)請根據(jù)統(tǒng)計圖表回答下列問題:本次被調(diào)查的市民共有多少人?并求和的值;請補全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中扇形區(qū)域所對應(yīng)的圓心角的度數(shù);若該市有100萬人口,請估計市民認(rèn)為“工業(yè)污染和汽車尾氣排放是霧霾天氣主要成因”的人數(shù).23.(12分)如圖,AC是的直徑,點B是內(nèi)一點,且,連結(jié)BO并延長線交于點D,過點C作的切線CE,且BC平分.求證:;若的直徑長8,,求BE的長.24.我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;如圖2,點P是四邊形ABCD內(nèi)一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)翻折變換的性質(zhì)分別得出對應(yīng)角相等以及利用等腰三角形的性質(zhì)判斷得出即可.【詳解】∵把直角三角形紙片沿過頂點B的直線(BE交CA于E)折疊,直角頂點C落在斜邊AB上,折疊后得等腰△EBA,∴∠A=∠EBA,∠CBE=∠EBA,∴∠A=∠CBE=∠EBA,∵∠C=90°,∴∠A+∠CBE+∠EBA=90°,∴∠A=∠CBE=∠EBA=30°,故①選項正確;∵∠A=∠EBA,∠EDB=90°,∴AD=BD,故②選項正確;∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,∴EC=ED(角平分線上的點到角的兩邊距離相等),∴點E到AB的距離等于CE的長,故③選項正確,故正確的有3個.故選D.【點睛】此題主要考查了翻折變換的性質(zhì)以及角平分線的性質(zhì)和等腰三角形的性質(zhì)等知識,利用折疊前后對應(yīng)角相等是解題關(guān)鍵.2、B【解析】試題分析:底面積是:9πcm1,底面周長是6πcm,則側(cè)面積是:×6π×5=15πcm1.則這個圓錐的全面積為:9π+15π=14πcm1.故選B.考點:圓錐的計算.3、B【解析】

根據(jù)拋物線圖象性質(zhì)確定a、b符號,把點A代入y=ax2+bx得到a與b數(shù)量關(guān)系,代入②,不等式kx≤ax2+bx的解集可以轉(zhuǎn)化為函數(shù)圖象的高低關(guān)系.【詳解】解:根據(jù)圖象拋物線開口向上,對稱軸在y軸右側(cè),則a>0,b<0,則①錯誤將A(1,2)代入y=ax2+bx,則2=9a+1b∴b=,∴a﹣b=a﹣()=4a﹣>-,故②正確;由正弦定義sinα=,則③正確;不等式kx≤ax2+bx從函數(shù)圖象上可視為拋物線圖象不低于直線y=kx的圖象則滿足條件x范圍為x≥1或x≤0,則④錯誤.故答案為:B.【點睛】二次函數(shù)的圖像,sinα公式,不等式的解集.4、B【解析】

本題考查統(tǒng)計的有關(guān)知識,找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù),平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).【詳解】解:設(shè)這家公司除經(jīng)理外50名員工的工資和為a元,則這家公司所有員工去年工資的平均數(shù)是元,今年工資的平均數(shù)是元,顯然;

由于這51個數(shù)據(jù)按從小到大的順序排列的次序完全沒有變化,所以中位數(shù)不變.

故選B.【點睛】本題主要考查了平均數(shù),中位數(shù)的概念,要掌握這些基本概念才能熟練解題.同時注意到個別數(shù)據(jù)對平均數(shù)的影響較大,而對中位數(shù)和眾數(shù)沒影響.5、C【解析】

先利用切線長定理得到,再利用可判斷為等邊三角形,然后根據(jù)等邊三角形的性質(zhì)求解.【詳解】解:,PB為的切線,,,為等邊三角形,.故選C.【點睛】本題考查切線長定理,掌握切線長定理是解題的關(guān)鍵.6、D【解析】試題解析:A.是可能發(fā)生也可能不發(fā)生的事件,屬于不確定事件,不符合題意;B.是可能發(fā)生也可能不發(fā)生的事件,屬于不確定事件,不符合題意;C.是可能發(fā)生也可能不發(fā)生的事件,屬于不確定事件,不符合題意;D.袋中只有4個球,且都是紅球,任意摸出一球是紅球,是必然事件,符合題意.故選D.點睛:事件分為確定事件和不確定事件.必然事件和不可能事件叫做確定事件.7、A【解析】試題分析:不可能事件發(fā)生的概率為0,故A正確;隨機事件發(fā)生的概率為在0到1之間,故B錯誤;概率很小的事件也可能發(fā)生,故C錯誤;投擲一枚質(zhì)地均勻的硬幣100次,正面向上的次數(shù)為50次是隨機事件,D錯誤;故選A.考點:隨機事件.8、D【解析】A.平移后,得y=(x+1)2,圖象經(jīng)過A點,故A不符合題意;B.平移后,得y=(x?3)2,圖象經(jīng)過A點,故B不符合題意;C.平移后,得y=x2+3,圖象經(jīng)過A點,故C不符合題意;D.平移后,得y=x2?1圖象不經(jīng)過A點,故D符合題意;故選D.9、D【解析】試題分析:列表如下

白1

白2

(黑,黑)

(白1,黑)

(白2,黑)

白1

(黑,白1)

(白1,白1)

(白2,白1)

白2

(黑,白2)

(白1,白2)

(白2,白2)

由表格可知,隨機摸出一個球后放回攪勻,再隨機摸出一個球所以的結(jié)果有9種,兩次摸出的球都是黑球的結(jié)果有1種,所以兩次摸出的球都是黑球的概率是.故答案選D.考點:用列表法求概率.10、A【解析】

根據(jù)方差的概念進行解答即可.【詳解】由題意可知甲的方差最小,則應(yīng)該選擇甲.故答案為A.【點睛】本題考查了方差,解題的關(guān)鍵是掌握方差的定義進行解題.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】試題解析:∵總?cè)藬?shù)為14÷28%=50(人),∴該年級足球測試成績?yōu)镈等的人數(shù)為(人).故答案為:1.12、1【解析】

由兩角對應(yīng)相等可得△BAD∽△CED,利用對應(yīng)邊成比例即可得兩岸間的大致距離AB的長.【詳解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,即,解得:AB==1(米).故答案為1.【點睛】本題主要考查了相似三角形的應(yīng)用,用到的知識點為:兩角對應(yīng)相等的兩三角形相似;相似三角形的對應(yīng)邊成比例.13、1.【解析】依據(jù)調(diào)和數(shù)的意義,有-=-,解得x=1.14、6【解析】試題分析:過S作AB的垂線,設(shè)垂足為C.根據(jù)三角形外角的性質(zhì),易證SB=AB.在Rt△BSC中,運用正弦函數(shù)求出SC的長.解:過S作SC⊥AB于C.∵∠SBC=60°,∠A=30°,∴∠BSA=∠SBC﹣∠A=30°,即∠BSA=∠A=30°.∴SB=AB=1.Rt△BCS中,BS=1,∠SBC=60°,∴SC=SB?sin60°=1×=6(海里).即船繼續(xù)沿正北方向航行過程中距燈塔S的最近距離是6海里.故答案為:6.15、2.1或2【解析】

在Rt△ACB中,根據(jù)勾股定理可求AB的長,根據(jù)折疊的性質(zhì)可得QD=BD,QP=BP,根據(jù)三角形中位線定理可得DE=AC,BD=AB,BE=BC,再在Rt△QEP中,根據(jù)勾股定理可求QP,繼而可求得答案.【詳解】如圖所示:在Rt△ACB中,∠C=90°,AC=6,BC=8,

AB==2,

由折疊的性質(zhì)可得QD=BD,QP=BP,

又∵QD⊥BC,

∴DQ∥AC,

∵D是AB的中點,

∴DE=AC=3,BD=AB=1,BE=BC=4,

①當(dāng)點P在DE右側(cè)時,

∴QE=1-3=2,

在Rt△QEP中,QP2=(4-BP)2+QE2,

即QP2=(4-QP)2+22,

解得QP=2.1,

則BP=2.1.

②當(dāng)點P在DE左側(cè)時,同①知,BP=2

故答案為:2.1或2.【點睛】考查了折疊的性質(zhì)、直角三角形的性質(zhì)以及勾股定理.此題難度適中,注意數(shù)形結(jié)合思想的應(yīng)用,注意折疊中的對應(yīng)關(guān)系.16、1.【解析】

由三角形BCD為直角三角形,根據(jù)已知面積與BD的長求出CD的長,由OC+CD求出OD的長,確定出B的坐標(biāo),代入反比例解析式求出k的值,利用反比例函數(shù)k的幾何意義求出三角形AOC面積即可.【詳解】∵BD⊥CD,BD=2,∴S△BCD=BD?CD=2,即CD=2.∵C(2,0),即OC=2,∴OD=OC+CD=2+2=1,∴B(1,2),代入反比例解析式得:k=10,即y=,則S△AOC=1.故答案為1.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,以及反比例函數(shù)圖象上點的坐標(biāo)特征,熟練掌握反比例函數(shù)k的幾何意義是解答本題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)200,90(2)圖形見解析(3)750人【解析】試題分析:(1)用對于共享單車不了解的人數(shù)20除以對于共享單車不了解的人數(shù)所占得百分比即可得本次調(diào)查人數(shù);用總?cè)藬?shù)乘以使用過共享單車人數(shù)所占的百分比即可得使用過共享單車的人數(shù);(2)用使用過共享單車的總?cè)藬?shù)減去0~2,4~6,6~8的人數(shù),即可得2~4的人數(shù),再圖上畫出即可;(3)用3000乘以騎行路程在2~4千米的人數(shù)所占的百分比即可得每天的騎行路程在2~4千米的人數(shù).試題解析:(1)20÷10%=200,200×(1-45%-10%)=90;(2)90-25-10-5=50,補全條形統(tǒng)計圖(3)=750(人)答:每天的騎行路程在2~4千米的大約750人18、(1)①,;②,,,;(2).【解析】

(1)①根據(jù)平行點的定義即可判斷;②分兩種情形:如圖1,當(dāng)點B在原點上方時,作OH⊥AB于點H,可知OH=1.如圖2,當(dāng)點B在原點下方時,同法可求;(2)如圖,直線OE的解析式為,設(shè)直線BC//OE交x軸于C,作CD⊥OE于D.設(shè)⊙A與直線BC相切于點F,想辦法求出點A的坐標(biāo),再根據(jù)對稱性求出左側(cè)點A的坐標(biāo)即可解決問題;【詳解】解:(1)①因為P2、P3到直線y=x的距離為1,所以根據(jù)平行點的定義可知,直線m的平行點是,,故答案為,.②解:由題意可知,直線m的所有平行點組成平行于直線m,且到直線m的距離為1的直線.設(shè)該直線與x軸交于點A,與y軸交于點B.如圖1,當(dāng)點B在原點上方時,作OH⊥AB于點H,可知OH=1.由直線m的表達式為y=x,可知∠OAB=∠OBA=45°.所以.直線AB與⊙O的交點即為滿足條件的點Q.連接,作軸于點N,可知.在中,可求.所以.在中,可求.所以.所以點的坐標(biāo)為.同理可求點的坐標(biāo)為.如圖2,當(dāng)點B在原點下方時,可求點的坐標(biāo)為點的坐標(biāo)為,綜上所述,點Q的坐標(biāo)為,,,.(2)如圖,直線OE的解析式為,設(shè)直線BC∥OE交x軸于C,作CD⊥OE于D.當(dāng)CD=1時,在Rt△COD中,∠COD=60°,∴,設(shè)⊙A與直線BC相切于點F,在Rt△ACE中,同法可得,∴,∴,根據(jù)對稱性可知,當(dāng)⊙A在y軸左側(cè)時,,觀察圖象可知滿足條件的N的值為:.【點睛】此題考查一次函數(shù)綜合題、直線與圓的位置關(guān)系、銳角三角函數(shù)、解直角三角形等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題.19、(1)DP=;(2)①;②.【解析】

(1)先判斷出△ADP是等邊三角形,進而得出DP=AP,即可得出結(jié)論;

(2)①先求出GH=2,進而求出DG,再得出DH,即可得出結(jié)論;

②分兩種情況,利用三角形的面積建立方程求解即可得出結(jié)論.【詳解】解:(1)∵A(0,4),

∴OA=4,

∵P(t,0),

∴OP=t,

∵△ABD是由△AOP旋轉(zhuǎn)得到,

∴△ABD≌△AOP,

∴AP=AD,∠DAB=∠PAO,

∴∠DAP=∠BAO=60°,

∴△ADP是等邊三角形,

∴DP=AP,

∵,

∴,

∴;(2)①當(dāng)t>0時,如圖1,BD=OP=t,

過點B,D分別作x軸的垂線,垂足于F,H,過點B作x軸的平行線,分別交y軸于點E,交DH于點G,

∵△OAB為等邊三角形,BE⊥y軸,

∴∠ABP=30°,AP=OP=2,

∵∠ABD=90°,

∴∠DBG=60°,

∴DG=BD?sin60°=,

∵GH=OE=2,

∴,

∴;②當(dāng)t≤0時,分兩種情況:

∵點D在x軸上時,如圖2在Rt△ABD中,,

(1)當(dāng)時,如圖3,BD=OP=-t,,∴,

∴,

∴或,

∴或,

(2)當(dāng)時,如圖4,BD=OP=-t,,

∴,

∴∴或(舍)∴.【點睛】此題是幾何變換綜合題,主要考查了全等三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),三角形的面積公式以及解直角三角形,正確作出輔助線是解決本題的關(guān)鍵.20、3+3.5【解析】

延長ED交BC延長線于點F,則∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=4?tan37°可得答案.【詳解】如圖,延長ED交BC延長線于點F,則∠CFD=90°,∵tan∠DCF=i=,∴∠DCF=30°,∵CD=4,∴DF=CD=2,CF=CDcos∠DCF=4×=2,∴BF=BC+CF=2+2=4,過點E作EG⊥AB于點G,則GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠AEG=4?tan37°,則AB=AG+BG=4?tan37°+3.5=3+3.5,故旗桿AB的高度為(3+3.5)米.考點:1、解直角三角形的應(yīng)用﹣仰角俯角問題;2、解直角三角形的應(yīng)用﹣坡度坡角問題21、熱氣球離地面的高度約為1米.【解析】

作AD⊥BC交CB的延長線于D,設(shè)AD為x,表示出DB和DC,根據(jù)正切的概念求出x的值即可.【詳解】解:作AD⊥BC交CB的延長線于D,設(shè)AD為x,由題意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt△ADC中,∠ACD=35°,∴tan∠ACD=,∴=,解得,x≈1.答:熱氣球離地面的高度約為1米.【點睛】考查的是解直角三角形的應(yīng)用,理解仰角和俯角的概念、掌握銳角三角函數(shù)的概念是解題的關(guān)鍵,解答時,注意正確作出輔助線構(gòu)造直角三角形.22、(1)200人,;(2)見解析,;(3)75萬人.【解析】

(1)用A類的人數(shù)除以所占的百分比求出被調(diào)查的市民數(shù),再用B類的人數(shù)除以總?cè)藬?shù)得出B類所占的百分比m,繼而求出n的值即可;(2)求出C、D兩組人數(shù),從而可補全條形統(tǒng)計圖,用360度乘以n即可得扇形區(qū)域所對應(yīng)的圓心角的度數(shù);(3)用該市的總?cè)藬?shù)乘以持有A、B兩類所占的百分比的和即可.【詳解】(1)本次被調(diào)查的市民共有:(人),∴,;(2)組的人數(shù)是(人)、組的人數(shù)是(人),∴;補全的條形統(tǒng)計圖如下圖所示:扇形區(qū)域所對應(yīng)的圓心角的度數(shù)為:;(3)(萬),∴若該市有100萬人口,市民認(rèn)為“工業(yè)污染和汽車尾氣排放是霧霾天氣主要成因”的人數(shù)約為75萬人.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖、統(tǒng)計表,讀

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論