




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
本文格式為Word版,下載可任意編輯——初中數(shù)學(xué)競(jìng)賽
初二數(shù)學(xué)聯(lián)賽班
第1講平行四邊形
八年級(jí)
知識(shí)總結(jié)歸納
一.平行四邊形的定義:
(1)定義:兩組對(duì)邊分別平行的四邊形叫平行四邊形.
(2)平行四邊形的定義包含兩層意義:①它是四邊形;②它的兩組對(duì)邊分別平行,兩者缺一不可.(3)定義既是基本判定也是基本性質(zhì):假使一個(gè)四邊形兩組對(duì)邊分別平行,那么它是平行四邊形;
反之假使一個(gè)四邊形是平行四邊形,那么它的兩組對(duì)邊分別平行.
二.平行四邊形的性質(zhì):
(1)角的性質(zhì):平行四邊形的鄰角互補(bǔ),對(duì)角相等.(2)邊的性質(zhì):平行四邊形的對(duì)邊平行且相等.(3)對(duì)角線的性質(zhì):平行四邊形的對(duì)角線相互平分.
(4)中心對(duì)稱性:平行四邊形是中心對(duì)稱圖形,對(duì)稱中心是對(duì)角線的交點(diǎn).三.平行四邊形的判定:
(1)定義:有一個(gè)角是直角的平行四邊形叫做矩形.(2)一組對(duì)邊法:一組對(duì)邊平行且相等.(3)對(duì)角線法:對(duì)角線相互平分.(4)兩組對(duì)角法:兩組對(duì)角分別相等.(5)兩組對(duì)邊法:兩組對(duì)邊分別相等.四.三角形的中位線:
(1)定義:連結(jié)三角形兩邊中點(diǎn)的線段叫做三角形的中位線.
(2)三角形的中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半.
典型例題
一.基本概念和性質(zhì)
具備以下條件的四邊形中,不能確定是平行四邊形的為().
A.相鄰的角互補(bǔ)B.兩組對(duì)角分別相等C.一組對(duì)邊平行,另一組對(duì)邊相等D.對(duì)角線交點(diǎn)是兩對(duì)角線中點(diǎn)
思維的挖掘能力的飛躍
1
八年級(jí)
初二數(shù)學(xué)聯(lián)賽班
如下左圖所示,四邊形ABCD的對(duì)角線AC和BD相交于點(diǎn)O,以下判斷正確的是().
A.若AO=OC,則ABCD是平行四邊形B.若AC=BD,則ABCD是平行四邊形
C.若AO=BO,CO=DO,則ABCD是平行四邊形D.若AO=OC,BO=OD,則ABCD是平行四邊形
如上右圖所示,對(duì)四邊形ABCD是平行四邊形的以下判斷,正確的打“√〞,錯(cuò)誤的打“×〞.
(1)由于AD∥BC,AB=CD,所以ABCD是平行四邊形.()(2)由于AB∥CD,AD=BC,所以ABCD是平行四邊形.()(3)由于AD∥BC,AD=BC,所以ABCD是平行四邊形.()(4)由于AB∥CD,AD∥BC,所以ABCD是平行四邊形.()(5)由于AB=CD,AD=BC,所以ABCD是平行四邊形.()(6)由于AD=CD,AB=AC,所以ABCD是平行四邊形.()
如下圖,在□ABCD中,E是AD邊上的中點(diǎn),若?ABE??EBC,AB?2,求□ABCD的
邊長(zhǎng).
如下圖,在四邊形ABCD中,AB=CD,BC=AD,E,F(xiàn)為對(duì)角線AC上的點(diǎn),且AE=CF,
求證:BE=DF.
B
CAE
D
2
思維的挖掘能力的飛躍
初二數(shù)學(xué)聯(lián)賽班
八年級(jí)
二.穩(wěn)定提高
如圖,在□ABCD中,E、F是對(duì)角線AC上兩點(diǎn),且AF?CE,求證:四邊形BEDF是平
行四邊形.
如圖,在△ABC中,AB?AC,AB?12cm,F(xiàn)是AB邊上的一點(diǎn),過點(diǎn)F作FE∥BC交CA于點(diǎn)F,過點(diǎn)E作ED∥AB交BC于點(diǎn)D,求四邊形BDEF的周長(zhǎng).
CE是?DCB的平分線,F(xiàn)是AB的中點(diǎn),AB?6,BC?4,AE:EF:FB如圖,在□ABCD中,
DFEC
ABA
FE
BD
C
是多少?
在□ABCD中,以AD、BC為邊分別向外作正△ADE、正△BFC,連結(jié)DB、EF交于O點(diǎn),
求證:DO?BO,EO?FO.
AEFDC
?B
AE
D
OBC
F
思維的挖掘能力的飛躍
3
八年級(jí)
形.
初二數(shù)學(xué)聯(lián)賽班
如圖,AD、BE、CF是△ABC的三條中線,F(xiàn)G∥BE,EG∥AB,則ADCG是平行四邊
A
G
FEBD
C
如下圖,已知四邊形ABCD是平行四邊形,在AB的延長(zhǎng)線上截取BE=AB,BF=BD,連接
CE,DF,相交于點(diǎn)M.求證:CD=CM.
三.與平行四邊形相關(guān)的雜題
如下圖,在□ABCD中,EF∥AB,GH∥AD,EF與GH相交于點(diǎn)O,圖中有多少個(gè)平
行四邊形?
如下圖,P是四邊形ABCD的DC邊上的一個(gè)動(dòng)點(diǎn),當(dāng)四邊形滿足什么條件時(shí),△PBA的
面積始終保持不變?
AB
PDCADEOGH
CFB
4
思維的挖掘能力的飛躍
初二數(shù)學(xué)聯(lián)賽班
周長(zhǎng)為98,求□ABCD的面積.
八年級(jí)
如圖,在□ABCD中,AE?BC于E,AF?CD于點(diǎn)F,若AE?6,AF?8,□ABCD的
BAF
E
C
D
如圖,△ABC中,AB?5,BC?6,AC?7,若以A、B、C為頂點(diǎn)作平行四邊形,求所
作的平行四邊形的周長(zhǎng).
平行四邊形的對(duì)角線分別是10和16,求它的邊長(zhǎng)的范圍.
BC
A
四.三角形的中位線
如圖,E為□ABCD中DC邊延長(zhǎng)線一點(diǎn),且CE?DC,連AE,分別交BC、BD于點(diǎn)F、
G,連AC交BD于O,連OF、BE.
(1)求證:AC?BE.(2)求證:AB?2OF.
AOGBFCD
E
思維的挖掘能力的飛躍
5
八年級(jí)
初二數(shù)學(xué)聯(lián)賽班
1AD.2
如下圖,在平行四邊形ABCD中,EF∥AB且交BC于點(diǎn)E,交AD于點(diǎn)F,連接AE,BF
交于點(diǎn)M,連接CF,DE交于點(diǎn)N,求證:MN∥AD且MN?
如圖,四邊形ABCD四邊上的中點(diǎn)分別是E、F、G、H.求證:四邊形EFGH為平行四邊
形.
DHF
G
C
AEB
如圖,四邊形ABCD中,E、F分別是AD、BC的中點(diǎn),G、H分別是對(duì)角線BD、AC的
中點(diǎn).求證:EF和GH相互平分.
如圖,E、F為△ABC邊AB、BC的中點(diǎn),在AC上取G、H兩點(diǎn),使AG?GH?HC,EG與FH的延長(zhǎng)線相交于D點(diǎn).求證:四邊形ABCD為平行四邊形.
BEAGHF
CD
BF
CGH
A
ED6
思維的挖掘能力的飛躍
初二數(shù)學(xué)聯(lián)賽班
EB于F,求證:EF?FB.
八年級(jí)
如下圖,在四邊形ABCD中,DC∥AB,以AD,AC為邊作平行四邊形ACED,延長(zhǎng)DC交
思維飛躍
如圖,四邊形ABCD中,AB∥CD,?ADC?2?ABC.求證:AB?AD?CD.
DC
AB
E?BD如圖,在△ABC中,AB?AC中,在AB上取點(diǎn)D,在AC的延長(zhǎng)線上取點(diǎn)E,使C.連
DE,交BC于G點(diǎn).求證:DE被BC平分.
A
D
BGC
E
思維的挖掘能力的飛躍
7
八年級(jí)
初二數(shù)學(xué)聯(lián)賽班
如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過點(diǎn)P作直線,交AD于點(diǎn)E,交BC于
點(diǎn)F.若PE?PF,且AP?AE?CP?CF,證明:四邊形ABCD為平行四邊形.
AEDC
PBF1如圖,E、F分別是四邊形ABCD的對(duì)角線AC、BD的中點(diǎn).求證:EF<(AB?CD).
2
CDEF
B
A
如圖,在△ABC中,BD、CE是△ABC的角平分線,AF?CE于F,AG?BD于G,連接
FG.求證:FG∥BC.
EADFBGC
8
思維的挖掘能力的飛躍
初二數(shù)學(xué)聯(lián)賽班
八年級(jí)
作業(yè)
AB∥CD;AB?CD;BC∥AD;BC?AD.1.已知四邊形ABCD,有以下四個(gè)條件:(1)(2)(3)(4)從
這四個(gè)條件中任選兩個(gè),能使四邊形ABCD成為平行四邊形是選法共有()A.6種B.5種C.4種D.3種
2.具備以下條件的四邊形中,不能確定是平行四邊形的為().A.相鄰的角互補(bǔ)B.兩組對(duì)角分別相等
C.一組對(duì)邊平行,另一組對(duì)邊相等D.對(duì)角線交點(diǎn)是兩對(duì)角線中點(diǎn)
3.如圖,在□ABCD中,E、F分別在BC、AD上,且AF?CE.求證:四邊形AECF是平行四
邊形.
4.如圖,在□ABCD中,?A?130?,在AD上取DE?DC,求?ECB的度數(shù).
5.在□ABCD中,AE平分?DAB交BC于E,將BC分為5和4兩部分,求平行四邊形的周長(zhǎng).
AFD
BE
CAED
BC思維的挖掘能力的飛躍
9
八年級(jí)
初二數(shù)學(xué)聯(lián)賽班
6.如圖,已知□ABCD中,過對(duì)角線的交點(diǎn)的O的直線交CB、求證:AD的延長(zhǎng)線于E和F,BE?DF.
FDOAE
B
C
7.如圖,E、F分別是四邊形ABCD對(duì)角線BD、AC的中點(diǎn),MN過E、F交AB于M,交CD于
N,且AB?CD.求證:?BMN??CNM.
AM
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國(guó)4色抱心小熊數(shù)據(jù)監(jiān)測(cè)報(bào)告
- 2025年中國(guó)1178門鎖數(shù)據(jù)監(jiān)測(cè)報(bào)告
- 2025至2030年中國(guó)鍍鎳燈鉤市場(chǎng)分析及競(jìng)爭(zhēng)策略研究報(bào)告
- 2025至2030年中國(guó)金鹵燈電感鎮(zhèn)流器市場(chǎng)分析及競(jìng)爭(zhēng)策略研究報(bào)告
- 2025至2030年中國(guó)西咪替丁膠囊市場(chǎng)分析及競(jìng)爭(zhēng)策略研究報(bào)告
- 2025至2030年中國(guó)肉制品加工設(shè)備市場(chǎng)分析及競(jìng)爭(zhēng)策略研究報(bào)告
- 2025至2030年中國(guó)電視遙控器架市場(chǎng)分析及競(jìng)爭(zhēng)策略研究報(bào)告
- 2025至2030年中國(guó)燃油熱水鑄鐵鍋爐市場(chǎng)分析及競(jìng)爭(zhēng)策略研究報(bào)告
- 2025至2030年中國(guó)活化去角質(zhì)霜市場(chǎng)分析及競(jìng)爭(zhēng)策略研究報(bào)告
- 2025至2030年中國(guó)楊貴妃工藝品市場(chǎng)分析及競(jìng)爭(zhēng)策略研究報(bào)告
- 秩序安保維護(hù)服務(wù) 投標(biāo)方案(技術(shù)方案)
- 中小學(xué)校長(zhǎng)招聘考試試題
- 2023年陜西郵電職業(yè)技術(shù)學(xué)院教師招聘考試筆試題庫及答案
- 化工企業(yè)適用-法律法規(guī)文件清單
- 工業(yè)催化原理及應(yīng)用
- 國(guó)開2023春《語言學(xué)概論》形考任務(wù)1-3+大作業(yè)參考答案
- 公安院校及專業(yè)招生政審表
- 青少年體能訓(xùn)練計(jì)劃方案
- 2023年公需課 大數(shù)據(jù)概述及基本概念考題
- 廣東深圳紅嶺中學(xué)物理自主招生試卷
- 世界衛(wèi)生組織生存質(zhì)量測(cè)定簡(jiǎn)表(WHOQOL-BREF)
評(píng)論
0/150
提交評(píng)論