版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第2023中考數(shù)學(xué)教案內(nèi)容七篇2023中考數(shù)學(xué)教案內(nèi)容七篇
中考數(shù)學(xué)教案內(nèi)容都有哪些?作為一個(gè)勤奮的教育工作者,有必要設(shè)計(jì)教案仔細(xì)。編寫教案有助于我們準(zhǔn)確把握教材的重點(diǎn)和難點(diǎn),進(jìn)而選擇合適的教學(xué)方法。下面是小編為大家?guī)?lái)的2023中考數(shù)學(xué)教案內(nèi)容七篇,希望大家能夠喜歡!
2023中考數(shù)學(xué)教案內(nèi)容(精選篇1)
教學(xué)目標(biāo)
知識(shí)技能:掌握應(yīng)用方程解決實(shí)際問題的方法步驟,提高分析問題、解決問題的能力。
過(guò)程與方法:通過(guò)探索球積分表中數(shù)量關(guān)系的過(guò)程,進(jìn)一步體會(huì)方程是解決實(shí)際問題的數(shù)學(xué)模型,并且明確用方程解決實(shí)際問題時(shí),不僅要注意解方程的過(guò)程是否正確,還要檢驗(yàn)方程的解是否符合問題的實(shí)際意義。
情感態(tài)度:鼓勵(lì)學(xué)生自主探究,合作交流,養(yǎng)成自覺反思的良好習(xí)慣。
重點(diǎn):把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,不僅會(huì)列方程求出問題的解,還會(huì)進(jìn)行推理判斷。
難點(diǎn):把數(shù)學(xué)問題轉(zhuǎn)化為數(shù)學(xué)問題。
關(guān)鍵:從積分表中找出等量關(guān)系。
教具:投影儀。
教法:探究、討論、啟發(fā)式教學(xué)。
教學(xué)過(guò)程
一、創(chuàng)設(shè)問題情境
用投影儀展示幾張比賽場(chǎng)面及比分(學(xué)習(xí)是生活需要,引起學(xué)生興趣)
二、引入課題
教師用投影儀展示課本106頁(yè)中籃球聯(lián)賽積分榜引導(dǎo)學(xué)生觀察,思考:①用式子表示總積分能與勝、負(fù)場(chǎng)數(shù)之間的數(shù)量關(guān)系;
②某隊(duì)的勝場(chǎng)總分能等于它的負(fù)場(chǎng)總積分么
學(xué)生充分思考、合作交流,然后教師引導(dǎo)學(xué)生分析。
師:要解決問題①必須求出勝一場(chǎng)積幾分,負(fù)一場(chǎng)積幾分,你能從積分榜中得到負(fù)一場(chǎng)積幾分么你選擇哪一行最能說(shuō)明負(fù)一場(chǎng)積幾分
生:從最下面一行可以發(fā)現(xiàn),負(fù)一場(chǎng)積1分。
師:勝一場(chǎng)呢
生:2分(有的用算術(shù)法、有的用方程各抒己見)
師:若一個(gè)隊(duì)勝a場(chǎng),負(fù)多少場(chǎng),又怎樣積分
生:負(fù)(14-a)場(chǎng),勝場(chǎng)積分2a,負(fù)場(chǎng)積分14-a,總積分a+14.
師:?jiǎn)栴}②如何解決
學(xué)生通過(guò)計(jì)算各隊(duì)勝、負(fù)總分得出結(jié)論:不等。
師:你能用方程說(shuō)明上述結(jié)論么
生:老師,沒有等量關(guān)系。
師:欸,就是,已知里沒說(shuō),是不是不能用方程解決了誰(shuí)又沒有大膽設(shè)想
生:老師,能不能試著讓它們相等
師:偉大的發(fā)明都是在嘗試中進(jìn)行的,試試
生:如果設(shè)一個(gè)隊(duì)勝了x場(chǎng),則負(fù)(14-x)場(chǎng),讓勝場(chǎng)總積分等負(fù)場(chǎng)總積分,方程為:2x=14-x解得x=4/3(學(xué)生掌聲鼓勵(lì))
師:x表示什么可以是分?jǐn)?shù)么由此你的出什么結(jié)論
生:x表示勝得場(chǎng)數(shù),應(yīng)該是一個(gè)整數(shù),所以,x=4/3不符合實(shí)際意義,因此沒有哪個(gè)隊(duì)的勝場(chǎng)總積分等于負(fù)場(chǎng)總積分。
師:此問題說(shuō)明,利用方程不僅求出具體數(shù)值,而且還可以推理判斷,是否存在某種數(shù)量關(guān)系;還說(shuō)明用方程解決實(shí)際問題時(shí),不僅要注意方程解得是否正確,還要檢驗(yàn)方程的解是否符合問題的實(shí)際意義。
拓展
如果刪去積分榜的最后一行,你還能用式子表示總積分與勝、負(fù)場(chǎng)數(shù)之間的數(shù)量關(guān)系嗎
師:我們可以從積分榜中積分不相同的兩行數(shù)據(jù)求的勝負(fù)一場(chǎng)各得幾分,如:一、三行。
教師引導(dǎo)學(xué)生設(shè)未知數(shù),列方程。學(xué)生試說(shuō)。
生:設(shè)勝一場(chǎng)積x分,則前進(jìn)隊(duì)勝場(chǎng)積分10x,負(fù)場(chǎng)積分(24-10x)分,它負(fù)了4場(chǎng),所以負(fù)一場(chǎng)積分為(24-10x)/4,同理從第三行得到負(fù)一場(chǎng)積分為(23-9x)/5,從而列方程為(24-10x)/4=(23-9x)/5。解得x=2,當(dāng)x=2時(shí),(24-10x)/4=1。仍然可得負(fù)一場(chǎng)積1分,勝一場(chǎng)積2分。
三、鞏固練習(xí)
已知某山區(qū)的平均氣溫與該山的海拔高度的關(guān)系見表:
海拔高度(單位:m)
100
200
300
400
平均氣溫(單位:℃)
22
21.5
21
20.5
20
若某種植物適宜生長(zhǎng)在18℃20℃(包括18℃20℃)的山區(qū),請(qǐng)問該植物適宜種在海拔為多少米的山區(qū)
學(xué)生分析題意,思考,在練習(xí)本上完成,然后同桌小議,代表發(fā)言,教師點(diǎn)撥。
四、課堂小結(jié):
讓幾個(gè)學(xué)生談自己的收獲,再讓一個(gè)學(xué)生全面總結(jié)。
五、布置作業(yè):
課本108頁(yè)8、9題。
六、教學(xué)反思
本節(jié)課主要是借球賽積分表問題傳授數(shù)學(xué)知識(shí)的應(yīng)用。在前面已經(jīng)討論過(guò)由實(shí)際問題抽象出一元一次方程模型和解一元一次方程的基礎(chǔ)上,本節(jié)進(jìn)一步以探究的形式討論如何用一元一次方程解決實(shí)際問題。要探究的問題比前幾節(jié)的問題復(fù)雜些,問題情境與實(shí)際情況更接近。本節(jié)的重點(diǎn)是建立實(shí)際問題的方程模型。通過(guò)探究活動(dòng),進(jìn)一步體驗(yàn)一元一次方程與實(shí)際的密切聯(lián)系,加強(qiáng)數(shù)學(xué)建模思想,培養(yǎng)運(yùn)用一元一次方程分析和解決問題的能力。
由于本節(jié)問題的背景和表達(dá)都比較貼近實(shí)際,其中的有些數(shù)量關(guān)系比較隱蔽,所以在探究過(guò)程中正確建立方程是難點(diǎn),教師要恰當(dāng)?shù)囊龑?dǎo),讓學(xué)生弄清問題背景,分析清楚有關(guān)數(shù)量關(guān)系,找出可作為方程依據(jù)的主要相等關(guān)系,但教師不要代替學(xué)生的思考。
2023中考數(shù)學(xué)教案內(nèi)容(精選篇2)
教學(xué)目標(biāo)
掌握b2—4ac0,ax2+bx+c=0(a≠0)有兩個(gè)不等的實(shí)根,反之也成立;b2—4ac=0,ax2+bx+c=0(a≠0)有兩個(gè)相等的實(shí)數(shù)根,反之也成立;b2—4ac0,ax2+bx+c=0(a≠0)沒實(shí)根,反之也成立;及其它們關(guān)系的運(yùn)用。
通過(guò)復(fù)習(xí)用配方法解一元二次方程的b2—4ac0、b2—4ac=0、b2—4ac0各一題,分析它們根的情況,從具體到一般,給出三個(gè)結(jié)論并應(yīng)用它們解決一些具體題目。
重難點(diǎn)關(guān)鍵
1。重點(diǎn):b2—4ac0一元二次方程有兩個(gè)不相等的實(shí)根;b2—4ac=0一元二次方程有兩個(gè)相等的實(shí)數(shù);b2—4ac0一元二次方程沒有實(shí)根。
2。難點(diǎn)與關(guān)鍵
從具體題目來(lái)推出一元二次方程ax2+bx+c=0(a≠0)的b2—4ac的情況與根的情況的關(guān)系。
教具、學(xué)具準(zhǔn)備
小黑板
教學(xué)過(guò)程
一、復(fù)習(xí)引入
(學(xué)生活動(dòng))用公式法解下列方程。
(1)2x2—3x=0(2)3x2—2x+1=0(3)4x2+x+1=0
老師點(diǎn)評(píng),(三位同學(xué)到黑板上作)老師只要點(diǎn)評(píng)(1)b2—4ac=90,有兩個(gè)不相等的實(shí)根;(2)b2—4ac=12—12=0,有兩個(gè)相等的實(shí)根;(3)b2—4ac=│—4×4×1│=0,方程沒有實(shí)根。
二、探索新知
方程b2—4ac的值b2—4ac的符號(hào)x1、x2的關(guān)系
(填相等、不等或不存在)
2x2—3x=0
3x2—2x+1=0
4x2+x+1=0
請(qǐng)觀察上表,結(jié)合b2—4ac的符號(hào),歸納出一元二次方程的根的情況。證明你的猜想。
從前面的具體問題,我們已經(jīng)知道b2—4ac0(0,=0)與根的情況,現(xiàn)在我們從求根公式的角度來(lái)分析:
求根公式:x=,當(dāng)b2—4ac0時(shí),根據(jù)平方根的意義,等于一個(gè)具體數(shù),所以一元一次方程的x1=≠x1=,即有兩個(gè)不相等的實(shí)根。當(dāng)b2—4ac=0時(shí),根據(jù)平方根的意義=0,所以x1=x2=,即有兩個(gè)相等的實(shí)根;當(dāng)b2—4ac0時(shí),根據(jù)平方根的意義,負(fù)數(shù)沒有平方根,所以沒有實(shí)數(shù)解。
因此,(結(jié)論)
(1)當(dāng)b2—4ac0時(shí),一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)不相等實(shí)數(shù)根即x1=,x2=。
(2)當(dāng)b—4ac=0時(shí),一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)相等實(shí)數(shù)根即x1=x2=。
(3)當(dāng)b2—4ac0時(shí),一元二次方程ax2+bx+c=0(a≠0)沒有實(shí)數(shù)根。
例1。不解方程,判定方程根的情況
(1)16x2+8x=—3
(2)9x2+6x+1=0
(3)2x2—9x+8=0
(4)x2—7x—18=0
分析:不解方程,判定根的情況,只需用b2—4ac的值大于0、小于0、等于0的情況進(jìn)行分析即可。
解:(1)化為16x2+8x+3=0
這里a=16,b=8,c=3,b2—4ac=64—4×16×3=—1280
所以,方程沒有實(shí)數(shù)根。
三、鞏固練習(xí)
不解方程判定下列方程根的情況:
(1)x2+10x+26=0(2)x2—x—=0(3)3x2+6x—5=0(4)4x2—x+=0
(5)x2—x—=0(6)4x2—6x=0(7)x(2x—4)=5—8x
四、應(yīng)用拓展
例2。若關(guān)于x的一元二次方程(a—2)x2—2ax+a+1=0沒有實(shí)數(shù)解,求ax+30的解集(用含a的式子表示)。
分析:要求ax+30的解集,就是求ax—3的解集,那么就轉(zhuǎn)化為要判定a的值是正、負(fù)或0。因?yàn)橐辉畏匠?a—2)x2—2ax+a+1=0沒有實(shí)數(shù)根,即(—2a)2—4(a—2)(a+1)0就可求出a的取值范圍。
解:∵關(guān)于x的一元二次方程(a—2)x2—2ax+a+1=0沒有實(shí)數(shù)根。
∴(—2a)2—4(a—2)(a+1)=4a2—4a2+4a+80
a—2
∵ax+30即ax
gt;—3
∴x—
∴所求不等式的解集為x—
五、歸納小結(jié)
本節(jié)課應(yīng)掌握:
b2—4ac0一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)不相等的實(shí)根;b2—4ac=0一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)相等的實(shí)根;b2—4ac0一元二次方程ax2+bx+c=0(a≠0)沒有實(shí)數(shù)根及其它的運(yùn)用。
六、布置作業(yè)
1。教材P46復(fù)習(xí)鞏固6綜合運(yùn)用9拓廣探索1、2。
2。選用課時(shí)作業(yè)設(shè)計(jì)。
第7課時(shí)作業(yè)設(shè)計(jì)
一、選擇題
1。以下是方程3x2—2x=—1的解的情況,其中正確的有()。
A?!遙2—4ac=—8,∴方程有解
B?!遙2—4ac=—8,∴方程無(wú)解
C?!遙2—4ac=8,∴方程有解
D。∵b2—4ac=8,∴方程無(wú)解
2。一元二次方程x2—ax+1=0的兩實(shí)數(shù)根相等,則a的值為()。
A。a=0B。a=2或a=—2
C。a=2D。a=2或a=0
3。已知k≠1,一元二次方程(k—1)x2+kx+1=0有根,則k的取值范圍是()。
A。k≠2B。k2C。k2且k≠1D。k為一切實(shí)數(shù)
二、填空題
1。已知方程x2+px+q=0有兩個(gè)相等的實(shí)數(shù),則p與q的關(guān)系是________。
2。不解方程,判定2x2—3=4x的根的情況是______(填二個(gè)不等實(shí)根或二個(gè)相等實(shí)根或沒有實(shí)根)。
3。已知b≠0,不解方程,試判定關(guān)于x的一元二次方程x2—(2a+b)x+(a+ab—2b2)=0的根的情況是________。
三、綜合提高題
1。不解方程,試判定下列方程根的情況。
(1)2+5x=3x2(2)x2—(1+2)x++4=0
2。當(dāng)c0時(shí),判別方程x2+bx+c=0的根的情況。
3。不解方程,判別關(guān)于x的方程x2—2kx+(2k—1)=0的根的情況。
2023中考數(shù)學(xué)教案內(nèi)容(精選篇3)
[教學(xué)目標(biāo)]
1、體會(huì)并了解反比例函數(shù)的圖象的意義
2、能列表、描點(diǎn)、連線法畫出反比例函數(shù)的圖象
3、通過(guò)反比例函數(shù)的圖象的分析,探索并掌握反比例函數(shù)的圖象的性質(zhì)
[教學(xué)重點(diǎn)和難點(diǎn)]
本節(jié)教學(xué)的重點(diǎn)是反比例函數(shù)的圖象及圖象的性質(zhì)
由于反比例函數(shù)的圖象分兩支,給畫圖帶來(lái)了復(fù)雜性是本節(jié)教學(xué)的難點(diǎn)
[教學(xué)過(guò)程]
1、情境創(chuàng)設(shè)
可以從復(fù)習(xí)一次函數(shù)的圖象開始:你還記得一次函數(shù)的圖象嗎在回憶與交流中,進(jìn)一步認(rèn)識(shí)函數(shù)圖象的直觀有助于理解函數(shù)的性質(zhì)。轉(zhuǎn)而導(dǎo)人關(guān)注新的函數(shù)——反比例函數(shù)的圖象研究:反比例函數(shù)的圖象又會(huì)是什么樣子呢
2、探索活動(dòng)
探索活動(dòng)1反比例函數(shù)y
由于反比例函數(shù)y
要分幾個(gè)層次來(lái)探求:
(1)可以先估計(jì)——例如:位置(圖象所在象限、圖象與坐標(biāo)軸的交點(diǎn)等)、趨勢(shì)(上升、下降等);
(2)方法與步驟——利用描點(diǎn)作圖;
列表:取自變量x的哪些值——x是不為零的任何實(shí)數(shù),所以不能取x的值的為零,但仍可以以零為基準(zhǔn),左右均勻,對(duì)稱地取值。
描點(diǎn):依據(jù)什么(數(shù)據(jù)、方法)找點(diǎn)
連線:怎樣連線——可在各個(gè)象限內(nèi)按照自變量從小到大的順序用兩條光滑的曲線把所描的點(diǎn)連接起來(lái)。
探索活動(dòng)2反比例函數(shù)y2的圖象.x2的圖象是曲線型的,且分成兩支.對(duì)此,學(xué)生第一次接觸有一定的難度,因此需x2的圖象.x
可以引導(dǎo)學(xué)生采用多種方式進(jìn)行自主探索活動(dòng):
2的圖象的方式與步驟進(jìn)行自主探索其圖象;x
222(2)可以通過(guò)探索函數(shù)y與y之間的關(guān)系,畫出y的圖象.__
22探索活動(dòng)3反比例函數(shù)y與y的圖象有什么共同特征__(1)可以用畫反比例函數(shù)y
引導(dǎo)學(xué)生從通過(guò)與一次函數(shù)的圖象的對(duì)比感受反比例函數(shù)圖象“曲線”及“兩支”的特征。(即雙曲線)反比例函數(shù)y
k(k≠0)的圖象中兩支曲線都與x軸、y軸不相交;并且當(dāng)k0時(shí),圖象在第一、第x
2023中考數(shù)學(xué)教案內(nèi)容(精選篇4)
把方程兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,就相當(dāng)于把方程中的某些項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊,這樣的變形叫做移項(xiàng)。
一、教材內(nèi)容分析
本節(jié)課是數(shù)學(xué)人教版七年級(jí)上冊(cè)第三章第二節(jié)第二小節(jié)的內(nèi)容。這是一節(jié)“概念加例題型”課,此種課型中的學(xué)習(xí)內(nèi)容一部分是概念,一部分是運(yùn)用前面的概念解決實(shí)際問題的例題。本節(jié)課主要內(nèi)容是利用移項(xiàng)解一元一次方程。是學(xué)生學(xué)習(xí)解一元一次方程的基礎(chǔ),這一部分內(nèi)容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基礎(chǔ)。這類課一般采用“導(dǎo)學(xué)導(dǎo)教,當(dāng)堂訓(xùn)練”的方式進(jìn)行,教師指導(dǎo)學(xué)生學(xué)習(xí)的重點(diǎn)一般不放在概念上,要特別留意學(xué)生運(yùn)用概念解題或做與例題類似的習(xí)題時(shí),對(duì)概念的理解是否到位。
二、教學(xué)目標(biāo):
1.知識(shí)與技能:
(1)找相等關(guān)系列一元一次方程;
(2)用移項(xiàng)解一元一次方程。
(3)掌握移項(xiàng)變號(hào)的基本原則
2.過(guò)程與方法:經(jīng)歷運(yùn)用方程解決實(shí)際問題的過(guò)程,發(fā)展抽象、概括、分析問題和解決問題的能力,認(rèn)識(shí)用方程解決實(shí)際問題的關(guān)鍵是建立相等關(guān)系。
3.情感、態(tài)度:通過(guò)具體情境引入新問題,在移項(xiàng)法則探究的過(guò)程中,培養(yǎng)學(xué)生合作意識(shí),滲透化歸的思想。
三、學(xué)情分析
針對(duì)七年級(jí)學(xué)生學(xué)習(xí)熱情高,但觀察、分析、概括能力較弱的特點(diǎn),本節(jié)從實(shí)際問題入手,讓學(xué)生通過(guò)自己思考、動(dòng)手,激發(fā)學(xué)生的求知欲,提高學(xué)生學(xué)習(xí)的興趣與積極性。在課堂教學(xué)中,學(xué)生主要采取自學(xué)、討論、思考、合作交流的學(xué)習(xí)方式,使學(xué)生真正成為課堂的主人,逐步培養(yǎng)學(xué)生觀察、概括、歸納的能力。
四、教學(xué)重點(diǎn):
利用移項(xiàng)解一元一次方程。
五、教學(xué)難點(diǎn):
移項(xiàng)法則的探究過(guò)程。
六、教學(xué)過(guò)程:
(一)情景引入
引例:請(qǐng)同學(xué)們思考這樣一個(gè)有趣的問題,我國(guó)民間流傳著許多趣味算題,多以順口溜的形式表達(dá),請(qǐng)看這樣一個(gè)數(shù)學(xué)問題:一群老頭去趕集,半路買了一堆梨,一人一個(gè)多一個(gè),一人兩個(gè)少兩個(gè),老頭和梨分別是()
A.3個(gè)老頭,4個(gè)梨B.4個(gè)老頭,3個(gè)梨C.5個(gè)老頭,6個(gè)梨D.7個(gè)老頭,8個(gè)梨
設(shè)計(jì)意圖:大部分同學(xué)會(huì)用算術(shù)法(答案代入法)來(lái)解答的,而這類問題我們?nèi)绾斡梅匠虂?lái)解答呢激起學(xué)生求知的欲望,巧妙過(guò)渡,揭示課題。板書課題:解一元一次方程——移項(xiàng)
(二)出示學(xué)習(xí)目標(biāo)
1.理解移項(xiàng)法,明確移項(xiàng)法的依據(jù),會(huì)解形如ax+b=cx+d類型的一元一次方程。
2.會(huì)建立方程解決簡(jiǎn)單的實(shí)際問題。
設(shè)計(jì)意圖:這兩個(gè)目標(biāo)的達(dá)成,也驗(yàn)證了本節(jié)課學(xué)生自學(xué)的效果,這也是本節(jié)課的教學(xué)重難點(diǎn)。
(三)導(dǎo)教導(dǎo)學(xué)
1.出示自學(xué)指導(dǎo)
自學(xué)教材問題2到例3的內(nèi)容,思考以下問題:
(1)問題2中這批書的總數(shù)有哪幾種表示法它們之間有什么關(guān)系本題可作為列方程的依據(jù)的等量關(guān)系是什么
(2)什么是移項(xiàng)移項(xiàng)的依據(jù)是什么移項(xiàng)時(shí)應(yīng)該注意什么問題解形如“ax+b=cx+d”類型的方程中移項(xiàng)起了什么作用自學(xué)例3后請(qǐng)歸納解這類一元一次方程的步驟(8分鐘后,比誰(shuí)能仿照問題2和例3的格式正確解答問題)
2.學(xué)生自學(xué)
學(xué)生根據(jù)自學(xué)提綱進(jìn)行獨(dú)立學(xué)習(xí),教師巡視,對(duì)自學(xué)速度慢的、自學(xué)能力差的、注意力不夠集中的學(xué)生給以暗示和幫扶,有利于自學(xué)后的成果展示。
3.交流展示(小組合作展示)
(合作交流一)教材問題2中這批書的總數(shù)有哪幾種表示法它們之間有什么關(guān)系本題哪個(gè)相等關(guān)系可作為列方程的依據(jù)呢
問題2:把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個(gè)班有多少學(xué)生
1)設(shè)未知數(shù):設(shè)這個(gè)班有X名學(xué)生,根據(jù)兩種不同分法這批書的總數(shù)就有兩種表示方法,即這批書共有(3X+20)本或(4X-25)本。
2)找相等關(guān)系:這批書的總數(shù)是一個(gè)定值,表示同一個(gè)量的兩個(gè)不同的式子相等。(板書)
3)根據(jù)等量關(guān)系列方程:3x+20=4x-25(板書)
【總結(jié)提升】解決“分配問題”應(yīng)用題的列方程的基本要點(diǎn):
A.找出能貫穿應(yīng)用題始終的一個(gè)不變的量。
B.用兩個(gè)不同的式子去表示這個(gè)量。
C.由表示這個(gè)不變的量的兩個(gè)式子相等列出方程。
設(shè)計(jì)意圖:因?yàn)樵谧詫W(xué)提綱的引領(lǐng)下,每個(gè)小組自主學(xué)習(xí)的效果不同,反饋的意見不同,所以在展示中首先要展示學(xué)生對(duì)課本例題的理解思路。采取主動(dòng)自愿的方式,一個(gè)小組主講,其它小組補(bǔ)充。
(變式訓(xùn)練1)某學(xué)校組織學(xué)生共同種一批樹,如果每人種5棵,則剩下3棵;如果每人種6棵,則缺3棵樹苗,求參與種樹的人數(shù)
(只設(shè)列即可)
(變式訓(xùn)練2)我國(guó)民間流傳著許多趣味算題,多以順口溜的形式表達(dá),請(qǐng)看這樣一個(gè)數(shù)學(xué)問題:一群老頭去趕集,半路買了一堆梨,一人一個(gè)多一個(gè),一人兩個(gè)少兩個(gè),老頭和梨各多少
設(shè)計(jì)意圖:檢查提問學(xué)生對(duì)“分配問題”應(yīng)用題掌握的情況,學(xué)生回答后教師板書所列方程為后面教學(xué)做好鋪墊。學(xué)生會(huì)帶著“如何解這類方程”的好奇心過(guò)渡到下一個(gè)環(huán)節(jié)的學(xué)習(xí)。
(合作交流二)什么是移項(xiàng)移項(xiàng)的依據(jù)是什么移項(xiàng)時(shí)應(yīng)該注意什么問題解形如“ax+b=cx+d”類型的方程中移項(xiàng)起了什么作用自學(xué)例3后請(qǐng)歸納解這類一元一次方程的步驟。
(板書)把等式一邊的某項(xiàng)改變符號(hào)后,從等式的一邊移到另一邊,這種變形叫做移項(xiàng)。
《解一元一次方程——移項(xiàng)》教學(xué)設(shè)計(jì)(魏玉英)
師:為什么等式(方程)可以這樣變形依據(jù)什么
(出示)依據(jù)等式的基本性質(zhì)
即:等式兩邊都加上或減去同一個(gè)數(shù)或同一個(gè)整式,所得結(jié)果仍是等式。
師:解一元一次方程中“移項(xiàng)”起了什么作用
(出示)通過(guò)移項(xiàng),使等號(hào)左邊僅含未知數(shù)的項(xiàng),等號(hào)右邊僅含常數(shù)的項(xiàng),使方程更接近x=a的形式。(與課題對(duì)照滲透轉(zhuǎn)化思想)
(基礎(chǔ)訓(xùn)練)搶答:判斷下列移項(xiàng)是否正確,如有錯(cuò)誤,請(qǐng)修改
《解一元一次方程——移項(xiàng)》教學(xué)設(shè)計(jì)(魏玉英)
設(shè)計(jì)理念:讓各個(gè)小組憑著勢(shì)力去搶答。這五個(gè)習(xí)題重點(diǎn)考察學(xué)生對(duì)移項(xiàng)的掌握是本節(jié)課的重難點(diǎn),習(xí)題分層設(shè)計(jì)且成梯度分布。
【歸納板書】解“ax+b=cx+d”型的一元一次方程的步驟:
(1)移項(xiàng),
(2)合并同類項(xiàng),
(3)系數(shù)化為1
(綜合訓(xùn)練)解下列方程(任選兩題)
設(shè)計(jì)理念:第(2)、(3)兩題未知數(shù)系數(shù)是相同類型的,所以讓學(xué)生任選一題即可。通過(guò)綜合訓(xùn)練能讓學(xué)生更進(jìn)一步鞏固用移項(xiàng)和合并同類項(xiàng)去解方程了。
(中考試練)若x=2是關(guān)于x的方程2x+3m-1=0的解,則m的值為
設(shè)計(jì)理念:通過(guò)本題的訓(xùn)練讓學(xué)生明確中考在本節(jié)的考點(diǎn),同時(shí)激勵(lì)學(xué)生在數(shù)學(xué)知識(shí)的學(xué)習(xí)中要抓住知識(shí)的核心和重點(diǎn)。
(四)我總結(jié)、我提高:
通過(guò)本節(jié)課的學(xué)習(xí)我收獲了。
設(shè)計(jì)意圖:通過(guò)小組之間互相談收獲的方式進(jìn)行課堂小結(jié),讓學(xué)生相互檢查本節(jié)課的學(xué)習(xí)效果??梢砸龑?dǎo)學(xué)生從本節(jié)課獲得的知識(shí)、解題的思想方法、學(xué)習(xí)的技巧等方面交流意見。
(五)當(dāng)堂檢測(cè)(50分)
1.下列方程變形正確的是()
A.由-2x=6,得x=3
B.由-3=x+2,得x=-3-2
C.由-7x+3=x-3,得(-7+1)x=-3-3
D.由5x=2x+3,得x=-1
2.一批游客乘汽車去觀看“上海世博會(huì)”。如果每輛汽車乘48人,那么還多4人;如果每輛汽車乘50人,那么還有6個(gè)空位,求汽車和游客各有多少(只設(shè)出未知數(shù)和列出方程即可)
3.(20分)已知x=1是關(guān)于x的方程3m+8x=m+x的解,求m的值。
(師生活動(dòng))學(xué)生獨(dú)立答題,教師巡回檢查,對(duì)先答完的學(xué)生進(jìn)行及時(shí)批改,并把得滿分的學(xué)生作為小老師對(duì)后解答完的學(xué)生的檢測(cè)進(jìn)行評(píng)定,最后老師進(jìn)行小結(jié)。
(六)實(shí)踐活動(dòng)
請(qǐng)每一位同學(xué)用自己的年齡編一道“ax+b=cx+d”型的方程應(yīng)用題,并解答。先在組內(nèi)交流,選出組內(nèi)最有創(chuàng)意的一個(gè)記在題卡上,自習(xí)在全班進(jìn)行展示。
設(shè)計(jì)意圖:
讓學(xué)生課后完成,讓學(xué)生深深體會(huì)到數(shù)學(xué)來(lái)源于生活而又服務(wù)于生活,體現(xiàn)了數(shù)學(xué)知識(shí)與實(shí)際相結(jié)合。
2023中考數(shù)學(xué)教案內(nèi)容(精選篇5)
教學(xué)目標(biāo):
1、理解切線的判定定理,并學(xué)會(huì)運(yùn)用。
2、知道判定切線常用的方法有兩種,初步掌握方法的選擇。
教學(xué)重點(diǎn):
切線的判定定理和切線判定的方法。
教學(xué)難點(diǎn):
切線判定定理中所闡述的圓的切線的兩大要素:一是經(jīng)過(guò)半徑外端;二是直線垂直于這條半徑;學(xué)生開始時(shí)掌握不好并極容易忽視一。
教學(xué)過(guò)程:
一、復(fù)習(xí)提問
【教師】
問題1.怎樣過(guò)直線l上一點(diǎn)P作已知直線的垂線
問題2.直線和圓有幾種位置關(guān)系
問題3.如何判定直線l是⊙O的切線
啟發(fā):
(1)直線l和⊙O的公共點(diǎn)有幾個(gè)
(2)圓心O到直線L的距離與半徑的數(shù)量關(guān)系如何
學(xué)生答完后,教師強(qiáng)調(diào)(2)是判定直線l是⊙O的切線的常用方法,即:定理:圓心O到直線l的距離OA等于圓的半(如圖1,投影顯示)
再啟發(fā):若把距離OA理解為OA⊥l,OA=r;把點(diǎn)A理解為半徑在圓上的端點(diǎn),請(qǐng)同學(xué)們?cè)噷⑸厦娑ɡ碛眯碌睦斫飧膶懗尚碌拿},此命題就是這節(jié)課要學(xué)的“切線的判定定理”(板書課題)
二、引入新課內(nèi)容
【學(xué)生】命題:經(jīng)過(guò)半徑的在圓上的端點(diǎn)且垂直于半徑的直線是圓的切線。
證明定理:?jiǎn)l(fā)學(xué)生分清命題的題設(shè)和結(jié)論,寫出已知、求證,分析證明思路,閱讀課本P60。
定理:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線。
定理的證明:已知:直線l經(jīng)過(guò)半徑OA的外端點(diǎn)A,直線l⊥OA,
求證:直線l是⊙O的切線
證明:略
定理的符號(hào)語(yǔ)言:∵直線l⊥OA,直線l經(jīng)過(guò)半徑OA的外端A
∴直線l為⊙O的切線。
是非題:
(1)垂直于圓的半徑的直線一定是這個(gè)圓的切線。()
(2)過(guò)圓的半徑的外端的直線一定是這個(gè)圓的切線。()
三、例題講解
例1、已知:直線AB經(jīng)過(guò)⊙O上的點(diǎn)C,并且OA=OB,CA=CB。
求證:直線AB是⊙O的切線。
引導(dǎo)學(xué)生分析:由于AB過(guò)⊙O上的點(diǎn)C,所以連結(jié)OC,只要證明AB⊥OC即可。
證明:連結(jié)OC.
∵OA=OB,CA=CB,
∴AB⊥OC
又∵直線AB經(jīng)過(guò)半徑OC的外端C
∴直線AB是⊙O的切線。
練習(xí)1、如圖,已知⊙O的半徑為R,直線AB經(jīng)過(guò)⊙O上的點(diǎn)A,并且AB=R,∠OBA=45°。求證:直線AB是⊙O的切線。
練習(xí)2、如圖,已知AB為⊙O的直徑,C為⊙O上一點(diǎn),AD⊥CD于點(diǎn)D,AC平分∠BAD。
求證:CD是⊙O的切線。
例2、如圖,已知AB是⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線上,且BD=OB,過(guò)點(diǎn)D作射線DE,使∠ADE=30°。
求證:DE是⊙O的切線。
思考題:在Rt△ABC中,∠B=90°,∠A的平分線交BC于D,以D為圓心,BD為半徑作圓,問⊙D的切線有幾條是哪幾條為什么
四、小結(jié)
1.切線的判定定理。
2.判定一條直線是圓的切線的方法:
①定義:直線和圓有唯一公共點(diǎn)。
②數(shù)量關(guān)系:直線到圓心的距離等于該圓半徑(即d=r).[
③切線的判定定理:經(jīng)過(guò)半徑外端且與這條半徑垂直的直線是圓的切線。
3.證明一條直線是圓的切線的輔助線和證法規(guī)律。
凡是已知公共點(diǎn)(如:直線經(jīng)過(guò)圓上的點(diǎn);直線和圓有一個(gè)公共點(diǎn);)往往是連結(jié)圓心和公共點(diǎn),證明垂直(直線和半徑);若不知公共點(diǎn),則過(guò)圓心作一條線段垂直于直線,證明所作的線段等于半徑。即已知公共點(diǎn),“連半徑,證垂直”;不知公共點(diǎn),則“作垂直,證半徑”。
五、布置作業(yè):略
《切線的判定》教后體會(huì)
本課例《切線的判定》作為市考試院調(diào)研課型兼區(qū)級(jí)研討課,我以“教師為引導(dǎo),學(xué)生為主體”的二期課改的理念出發(fā),通過(guò)學(xué)生自我活動(dòng)得到數(shù)學(xué)結(jié)論作為教學(xué)重點(diǎn),呈現(xiàn)學(xué)生真實(shí)的思維過(guò)程為教學(xué)宗旨,進(jìn)行教學(xué)設(shè)計(jì),目的在于讓學(xué)生對(duì)知識(shí)有一個(gè)本質(zhì)的、有效的理解。本節(jié)課切實(shí)反映了平時(shí)的教學(xué)情況,為前來(lái)調(diào)研和研討的老師提供了真實(shí)的樣本。反思本節(jié)課,有以下幾個(gè)成功與不足之處:
成功之處:
一、教材的二度設(shè)計(jì)順應(yīng)了學(xué)生的認(rèn)知規(guī)律
這批學(xué)生習(xí)慣于單一知識(shí)點(diǎn)的學(xué)習(xí),即得出一個(gè)知識(shí)點(diǎn),必須由淺入深反復(fù)進(jìn)行練習(xí),鞏固后方能加以提升與綜合,否則就會(huì)混淆概念或定理的條件和結(jié)論,導(dǎo)致錯(cuò)誤,久之便會(huì)失去學(xué)習(xí)數(shù)學(xué)的興趣和信心。本教時(shí)課本上將切線判定定理和性質(zhì)定理的導(dǎo)出作為第一課時(shí),兩個(gè)定理的運(yùn)用和切線的兩種常用的判定方法作為第二課時(shí),學(xué)生往往會(huì)因第一時(shí)間得不到及時(shí)的鞏固,對(duì)定理本質(zhì)的東西不能很好地理解,在運(yùn)用時(shí)抓不住關(guān)鍵,解題僅僅停留在模仿層次上,接受能力薄弱的學(xué)生更是因知識(shí)點(diǎn)多不知所措,在云里霧里。二度設(shè)計(jì)將切線的判定方法作為第一課時(shí),切線的性質(zhì)定理以及兩個(gè)定理的綜合運(yùn)用作為第二課時(shí),這樣的設(shè)計(jì)即是對(duì)前面所學(xué)的“直線與圓相切的判定方法”的復(fù)習(xí),又是對(duì)后面學(xué)習(xí)綜合運(yùn)用兩個(gè)定理,合理選擇兩種方法判定切線作了鋪墊,教學(xué)呈現(xiàn)了一個(gè)循序漸進(jìn)、溫過(guò)知新的過(guò)程。從學(xué)生的反饋情況判斷,教學(xué)效果較為理想。
二、重視學(xué)生數(shù)感的培養(yǎng)呼應(yīng)了課改的理念
數(shù)感類似與語(yǔ)感、樂感、美感,擁有了感覺,知識(shí)便會(huì)融會(huì)貫通,學(xué)習(xí)就會(huì)輕松。擁有數(shù)感,不僅會(huì)對(duì)數(shù)學(xué)知識(shí)反應(yīng)靈敏,更會(huì)在生活中不知不覺運(yùn)用數(shù)學(xué)思維方式解決實(shí)際問題。本節(jié)課中,兩個(gè)例題由教師誘導(dǎo),學(xué)生發(fā)現(xiàn)完成的,而三個(gè)習(xí)題則完全放手讓學(xué)生去思考完成,不乏有不會(huì)做和做得復(fù)雜的學(xué)生,但在展示和交流中,撞擊出思維的火花,難以忘懷。讓學(xué)生嘗試總結(jié)規(guī)律,也是對(duì)學(xué)生能力的培養(yǎng),在本節(jié)課中,輔助線的規(guī)律是由學(xué)生得出,事實(shí)證明,學(xué)生有這樣的理解、概括和表達(dá)能力。通過(guò)思考得出正確的結(jié)論,這個(gè)結(jié)論往往是刻骨銘心的,長(zhǎng)此以往,對(duì)數(shù)和形的感覺會(huì)越來(lái)越好。
不足之處:
一、這節(jié)課沒有“高潮”,沒有讓學(xué)生特別興奮激起求知欲的情境,整個(gè)教學(xué)過(guò)程是在一個(gè)平靜、和諧的氛圍中完成的。
二、課的引入太直截了當(dāng),脫離不了應(yīng)試教學(xué)的味道。
三、教學(xué)風(fēng)格的定勢(shì)使所授知識(shí)不能很合理地與生活實(shí)際相聯(lián)系,一定程度上阻礙了學(xué)生解決實(shí)際問題能力的發(fā)展。
通過(guò)本節(jié)課的教學(xué),我深刻感悟到在教學(xué)實(shí)踐中,教師要不斷地充實(shí)自己,拓寬知識(shí)面,努力突破已有的教學(xué)形狀,適應(yīng)現(xiàn)代教育,適應(yīng)現(xiàn)代學(xué)生。課堂教學(xué)中,敢于實(shí)驗(yàn),舍得放手,盡量培養(yǎng)學(xué)生主體意識(shí),問題讓學(xué)生自己去揭示,方法讓學(xué)生自己去探索,規(guī)律讓學(xué)生自己去發(fā)現(xiàn),知識(shí)讓學(xué)生自己去獲得,教師只提供給學(xué)生現(xiàn)實(shí)情境、充足的思考時(shí)間和活動(dòng)空間,給學(xué)生表現(xiàn)自我的機(jī)會(huì)和成功的體驗(yàn),培養(yǎng)學(xué)生
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高等教育機(jī)構(gòu)研究生導(dǎo)師聘用合同3篇
- 2019-2025年中國(guó)食用植物油市場(chǎng)運(yùn)行態(tài)勢(shì)及行業(yè)發(fā)展前景預(yù)測(cè)報(bào)告
- 2025年度車庫(kù)土地租賃開發(fā)合同4篇
- 2025年土地承包經(jīng)營(yíng)合作協(xié)議范本
- 2025年中國(guó)農(nóng)村金融市場(chǎng)深度調(diào)研分析及投資前景研究預(yù)測(cè)報(bào)告
- 二零二五年度臨時(shí)工環(huán)保作業(yè)及廢棄物處理合同4篇
- 2025年中國(guó)液壓泵站行業(yè)發(fā)展?jié)摿Ψ治黾巴顿Y方向研究報(bào)告
- 2025版木工行業(yè)木材資源循環(huán)利用合同4篇
- 二零二五年度木跳板安全性能檢測(cè)采購(gòu)合同規(guī)范4篇
- 2019-2025年中國(guó)食品包裝行業(yè)發(fā)展趨勢(shì)及投資前景預(yù)測(cè)報(bào)告
- 醫(yī)院三基考核試題(康復(fù)理療科)
- 2024-2030年中國(guó)招標(biāo)代理行業(yè)深度分析及發(fā)展前景與發(fā)展戰(zhàn)略研究報(bào)告
- 醫(yī)師定期考核 (公共衛(wèi)生)試題庫(kù)500題(含答案)
- 基因突變和基因重組(第1課時(shí))高一下學(xué)期生物人教版(2019)必修2
- 內(nèi)科學(xué)(醫(yī)學(xué)高級(jí)):風(fēng)濕性疾病試題及答案(強(qiáng)化練習(xí))
- 音樂劇好看智慧樹知到期末考試答案2024年
- 辦公設(shè)備(電腦、一體機(jī)、投影機(jī)等)采購(gòu) 投標(biāo)方案(技術(shù)方案)
- 案卷評(píng)查培訓(xùn)課件模板
- 2024年江蘇省樣卷五年級(jí)數(shù)學(xué)上冊(cè)期末試卷及答案
- 人教版初中英語(yǔ)七八九全部單詞(打印版)
- 波浪理論要點(diǎn)圖解完美版
評(píng)論
0/150
提交評(píng)論