智能交通系統(tǒng)機動車車標識別方法_第1頁
智能交通系統(tǒng)機動車車標識別方法_第2頁
智能交通系統(tǒng)機動車車標識別方法_第3頁
智能交通系統(tǒng)機動車車標識別方法_第4頁
智能交通系統(tǒng)機動車車標識別方法_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

智能交通系統(tǒng)機動車車標識別方法摘要:隨著城市化進程的加快,機動車數(shù)量急劇增加,交通擁堵、交通事故頻發(fā)已成為社會面臨的嚴重問題。為了提高交通運輸安全水平,智能交通系統(tǒng)應運而生,并得到了廣泛的研究和應用。其中,車輛標識識別技術是智能交通系統(tǒng)中的重要組成部分之一。

本文主要研究智能交通系統(tǒng)中機動車車標識別方法,采用了基于深度神經(jīng)網(wǎng)絡的卷積神經(jīng)網(wǎng)絡(CNN)方法。首先,對機動車車標進行了圖像預處理,包括圖像增強、去噪、二值化等。然后,通過構建車標圖像數(shù)據(jù)庫,利用CNN算法進行特征提取和分類識別,實現(xiàn)了對機動車車標的自動識別。該方法可以有效區(qū)分不同類型的車標,并且對于光照、角度等因素具有較強的魯棒性。

通過實驗驗證,本文所提出的方法具有較高的識別準確性和識別速度,可在智能交通系統(tǒng)中實現(xiàn)對機動車的車標識別,具有廣泛的應用前景和推廣價值。

關鍵詞:智能交通系統(tǒng);機動車;車標識別;卷積神經(jīng)網(wǎng)絡;深度學習

Abstract:Withtheaccelerationofurbanization,thenumberofvehicleshasincreaseddramatically,andtrafficcongestionandaccidentshavebecomeseriousproblemsfacedbysociety.Inordertoimprovetheleveloftransportationsafety,theintelligenttransportationsystemhasemergedandhasbeenwidelystudiedandapplied.amongthem,theidentificationtechnologyofvehicleidentificationisoneoftheimportantcomponentsintheintelligenttransportationsystem.

Thispapermainlystudiestheidentificationmethodofmotorvehiclelogointheintelligenttransportationsystem,whichadoptstheconvolutionalneuralnetwork(CNN)basedondeepneuralnetwork.Firstly,thevehiclelogoimageispreprocessed,includingimageenhancement,noisereduction,binarization,etc.Then,throughtheconstructionofthevehiclelogoimagedatabase,thefeatureextractionandclassificationrecognitionarerealizedbyusingCNNalgorithm,andtheautomaticrecognitionofthevehiclelogoisrealized.Thismethodcaneffectivelydistinguishdifferenttypesofvehiclelogos,andhasstrongrobustnessforfactorssuchasilluminationandangle.

Throughexperimentalverification,themethodproposedinthispaperhashighrecognitionaccuracyandrecognitionspeed,andcanrealizethelogorecognitionofmotorvehiclesintheintelligenttransportationsystem,whichhasbroadapplicationprospectsandpromotionvalue.

Keywords:intelligenttransportationsystem;motorvehicle;logorecognition;convolutionalneuralnetwork;deeplearningWiththedevelopmentofintelligenttransportationsystems,motorvehiclelogorecognitionhasbecomeanimportantresearchtopicinrecentyears.Thetraditionallogorecognitionmethodbasedonimageprocessingtechnologyhassomelimitations,suchaslowrecognitionrateanddifficulttoadapttocomplexenvironments.

Inthispaper,anewlogorecognitionmethodbasedonconvolutionalneuralnetworkanddeeplearningtechnologywasproposed.Firstly,adatasetofmotorvehiclelogoswasconstructed,andtherawdatawaspreprocessedtoenhancetheimagequality.Then,aconvolutionalneuralnetworkmodelwasdesignedandtrainedusingthedataset.Themodelwasoptimizedbyadjustingthehyperparametersandusingthetransferlearningmethod.Finally,thetrainedmodelwasusedtoidentifylogosinreal-time.

Experimentalresultsshowedthattheproposedmethodachievedhighrecognitionaccuracyandfastrecognitionspeed.Itcaneffectivelyrecognizelogosfromimagescapturedunderdifferentilluminationandangleconditions.Inaddition,themethodisscalableandcanbeappliedtoalargenumberoflogorecognitiontasksinintelligenttransportationsystems.

Inconclusion,theproposedlogorecognitionmethodbasedonconvolutionalneuralnetworkanddeeplearningtechnologyhasgreatpotentialforapplicationinintelligenttransportationsystems.Itprovidesaneffectivesolutionforautomaticlogorecognition,whichcanimprovetheefficiencyandqualityoftrafficmanagementandreducetherisksoftrafficaccidents.Themethodcanalsobeextendedtootherfields,suchasproductrecognition,facerecognition,andobjectdetectionAdditionally,theuseofdeeplearningforlogorecognitionhasthepotentialtorevolutionizethewaybusinessesoperatebyallowingfortheautomationoftasksthatpreviouslyrequiredhumanintervention.Thisincludestaskssuchasmonitoringproductplacementinstores,trackingbrandexposureinmedia,andidentifyingcounterfeitproducts.Thepossibilitiesforimprovedefficiencyandaccuracyintheseareasareendlesswiththeuseofdeeplearningforlogorecognition.

Furthermore,thealgorithmusedinthislogorecognitionmethodcanbecontinuouslyimprovedthroughtheuseoflargerandmorediversedatasets.Astheamountofdataavailablefortrainingincreases,thenetwork'sabilitytoaccuratelyrecognizelogoswillimprove.Thismeansthatthepotentialapplicationsofthistechnologywillonlycontinuetoexpandasmoredatabecomesavailable.

Inconclusion,deeplearning-basedlogorecognitionhasthepotentialtogreatlyimprovevariousaspectsofourdailylivesfromtrafficmanagementtobusinessoperations.Asthetechnologycontinuestoevolveandimprove,wecanexpecttoseeevenmorepracticalusesforlogorecognitioninthefutureOneofthepotentialapplicationsofdeeplearning-basedlogorecognitionisinadvertisingandmarketing.Advertiserscanusethistechnologytotracktheeffectivenessoftheiradvertisingcampaignsbymeasuringtheimpactofdifferentlogosandbrandelementsonconsumerbehavior.Forexample,theycanuselogorecognitiontotrackhowoftentheiradsareviewedandwhichlogosaremosteffectiveatdrivingsales.

Anotherpotentialuseforthistechnologyisinthefieldofsecurity.Deeplearning-basedlogorecognitioncanbeusedtomonitorsecuritycamerasandidentifypotentialthreatsbasedonthelogosthatarecapturedinthefootage.Thiscanhelpsecuritypersonnelrespondtoincidentsmorequicklyandwithgreateraccuracy.

Therearealsoimplicationsforintellectualpropertymanagement.Companiescanuselogorecognitiontomonitortheuseoftheirlogosandtrademarksonline,includingonsocialmediaplatforms.Thiscanhelpthemdetectandpreventtheunauthorizeduseoftheirintellectualproperty,whichcanbeacostlyproblemforbrands.

Furthermore,deeplearning-basedlogorecognitionhasthepotentialtoenhanceaccessibilityforpeoplewithvisualimpairments.Byusingimagerecognitiontechnologytodetectlogosandothervisualcues,applicationscanprovideaudiodescriptionsforpeoplewhomaynotbeabletoseethem.Thiscanmakethecontentmoreaccessibleandhelptocreateamoreinclusivesociety.

Finally,thedevelopmentofdeeplearning-basedlogorecognitionhasthepotentialtocreatenewbusinessopportunitiesinthefieldofartificialintelligence.Asthedemandfordeeplearning-basedapplicationscontinuestogrow,companiesthatspecializeindevelopingandrefiningthealgorithmsandmodelsneededforlogorecognitionwillbewell-positionedtocapitalizeonthistrend.

Overall,deeplearning-basedlogorecognitionhasthepotentialtorevolutionizeawiderangeofindustriesandareasofdailylife.Asthetechnologycontinuestoe

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論