![2023年吉林省東遼市高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題含解析_第1頁](http://file4.renrendoc.com/view/3895efcc12b19aabf3a5453652f74698/3895efcc12b19aabf3a5453652f746981.gif)
![2023年吉林省東遼市高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題含解析_第2頁](http://file4.renrendoc.com/view/3895efcc12b19aabf3a5453652f74698/3895efcc12b19aabf3a5453652f746982.gif)
![2023年吉林省東遼市高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題含解析_第3頁](http://file4.renrendoc.com/view/3895efcc12b19aabf3a5453652f74698/3895efcc12b19aabf3a5453652f746983.gif)
![2023年吉林省東遼市高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題含解析_第4頁](http://file4.renrendoc.com/view/3895efcc12b19aabf3a5453652f74698/3895efcc12b19aabf3a5453652f746984.gif)
![2023年吉林省東遼市高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題含解析_第5頁](http://file4.renrendoc.com/view/3895efcc12b19aabf3a5453652f74698/3895efcc12b19aabf3a5453652f746985.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.直線在軸上的截距為()A.2 B.﹣3 C.﹣2 D.32.若直線:與直線:平行,則的值為()A.1 B.1或2 C.-2 D.1或-23.一個(gè)圓柱的底面直徑與高都等于球的直徑,設(shè)圓柱的側(cè)面積為,球的表面積為,則()A. B. C. D.14.某文體局為了解“跑團(tuán)”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期間“跑團(tuán)”每月跑步的平均里程(單位:公里)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)折線圖,下列結(jié)論正確的是()A.月跑步平均里程的中位數(shù)為6月份對(duì)應(yīng)的里程數(shù)B.月跑步平均里程逐月增加C.月跑步平均里程高峰期大致在8、9月D.1月至5月的月跑步平均里程相對(duì)于6月至11月,波動(dòng)性更小,變化比較平穩(wěn)5.將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,所得圖象對(duì)應(yīng)的函數(shù)解析式是A. B. C. D.6.如圖,三棱柱中,側(cè)棱底面ABC,,,,則異面直線與所成角的余弦值為()A. B. C. D.7.兩圓和的位置關(guān)系是()A.相離 B.相交 C.內(nèi)切 D.外切8.設(shè)某曲線上一動(dòng)點(diǎn)到點(diǎn)的距離與到直線的距離相等,經(jīng)過點(diǎn)的直線與該曲線相交于,兩點(diǎn),且點(diǎn)恰為等線段的中點(diǎn),則()A.6 B.10 C.12 D.149.已知向量,,,則實(shí)數(shù)的值為()A. B. C.2 D.310.已知等差數(shù)列的前項(xiàng)的和為,若,則等于()A.81 B.90 C.99 D.180二、填空題:本大題共6小題,每小題5分,共30分。11.已知正方體的棱長(zhǎng)為,點(diǎn)、分別為、的中點(diǎn),則點(diǎn)到平面的距離為______.12.在中,角的對(duì)邊分別為,若,則角________.13.某空間幾何體的三視圖如圖所示,則該幾何體的體積為________14.已知,且,則的取值范圍是____________.15.函數(shù)在區(qū)間上的值域?yàn)開_____.16.明代程大位《算法統(tǒng)宗》卷10中有題:“遠(yuǎn)望巍巍塔七層,紅燈點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”則尖頭共有__________盞燈.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,已知平面是正三角形,.(1)求證:平面平面;(2)求二面角的正切值.18.已知向量的夾角為60°,且.(1)求與的值;(2)求與的夾角.19.已知角終邊上一點(diǎn),且,求的值.20.如圖,在三棱柱中,、分別是棱,的中點(diǎn),求證:(1)平面;(2)平面平面.21.設(shè)函數(shù)f(x)=2cos2x﹣cos(2x﹣).(1)求f(x)的周期和最大值;(2)已知△ABC中,角A.B.C的對(duì)邊分別為A,B,C,若f(π﹣A)=,b+c=2,求a的最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
令,求出值則是截距?!驹斀狻恐本€方程化為斜截式為:,時(shí),,所以,在軸上的截距為-3?!军c(diǎn)睛】軸上的截距:即令,求出值;同理軸上的截距:即令,求出值2、A【解析】試題分析:因?yàn)橹本€:與直線:平行,所以或-2,又時(shí)兩直線重合,所以.考點(diǎn):兩條直線平行的條件.點(diǎn)評(píng):此題是易錯(cuò)題,容易選C,其原因是忽略了兩條直線重合的驗(yàn)證.3、D【解析】
由圓柱的側(cè)面積及球的表面積公式求解即可.【詳解】解:設(shè)圓柱的底面半徑為,則,則圓柱的側(cè)面積為,球的表面積為,則,故選:D.【點(diǎn)睛】本題考查了圓柱的側(cè)面積的求法,重點(diǎn)考查了球的表面積公式,屬基礎(chǔ)題.4、D【解析】
根據(jù)折線圖中11個(gè)月的數(shù)據(jù)分布,數(shù)據(jù)從小到大排列中間的數(shù)可得中位數(shù),根據(jù)數(shù)據(jù)的增長(zhǎng)趨勢(shì)可判斷BCD.【詳解】由折線圖知,月跑步平均里程的中位數(shù)為5月份對(duì)應(yīng)的里程數(shù);月跑步平均里程不是逐月增加的;月跑步平均里程高峰期大致在9,l0月份,故A,B,C錯(cuò).本題選擇D選項(xiàng).【點(diǎn)睛】本題主要考查了識(shí)別折線圖進(jìn)行數(shù)據(jù)分析,屬于基礎(chǔ)題.5、B【解析】
利用三角函數(shù)圖像平移原則,結(jié)合誘導(dǎo)公式,即可求解.【詳解】函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度得到.故選B.【點(diǎn)睛】本題考查三角圖像變換,誘導(dǎo)公式,熟記變換原則,準(zhǔn)確計(jì)算是關(guān)鍵,是基礎(chǔ)題.6、A【解析】
以為坐標(biāo)原點(diǎn),分別以所在直線為軸建立空間直角坐標(biāo)系,由已知求與的坐標(biāo),由兩向量所成角的余弦值求解異面直線與所成角的余弦值.【詳解】如圖,以為坐標(biāo)原點(diǎn),分別以所在直線為軸建立空間直角坐標(biāo)系,由已知得:,,所以,.設(shè)異面直線與所成角,則故異面直線與所成角的余弦值為.故選:A【點(diǎn)睛】本題主要考查了利用空間向量求解線線角的問題,屬于基礎(chǔ)題.7、B【解析】
由圓的方程可得兩圓圓心坐標(biāo)和半徑;根據(jù)圓心距和半徑之間的關(guān)系,即可判斷出兩圓的位置關(guān)系.【詳解】由圓的方程可知,兩圓圓心分別為:和;半徑分別為:,則圓心距:兩圓位置關(guān)系為:相交本題正確選項(xiàng):【點(diǎn)睛】本題考查圓與圓位置關(guān)系的判定;關(guān)鍵是明確兩圓位置關(guān)系的判定是根據(jù)圓心距與兩圓半徑之間的長(zhǎng)度關(guān)系確定.8、B【解析】由曲線上一動(dòng)點(diǎn)到點(diǎn)的距離與到直線的距離相等知該曲線為拋物線,其方程為,分別過點(diǎn)向拋物線的準(zhǔn)線作垂線,垂足分別為,由梯形的中位線定理知,所以,故選B.9、A【解析】
將向量的坐標(biāo)代入中,利用坐標(biāo)相等,即可得答案.【詳解】∵,∴.故選:A.【點(diǎn)睛】本題考查向量相等的坐標(biāo)運(yùn)算,考查運(yùn)算求解能力,屬于基礎(chǔ)題.10、B【解析】
根據(jù)已知得到的值,利用等差數(shù)列前項(xiàng)和公式以及等差數(shù)列下標(biāo)和的性質(zhì),求得的值.【詳解】依題意,所以,故選B.【點(diǎn)睛】本小題主要考查等差數(shù)列的性質(zhì),考查等差數(shù)列前項(xiàng)和的計(jì)算,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
作出圖形,取的中點(diǎn),連接,證明平面,可知點(diǎn)平面的距離等于點(diǎn)到平面的距離,然后利用等體積法計(jì)算出點(diǎn)到平面的距離,即為所求.【詳解】如下圖所示,取的中點(diǎn),連接,在正方體中,且,、分別為、的中點(diǎn),且,所以,四邊形為平行四邊形,且,又,,平面,平面,平面,則點(diǎn)平面的距離等于點(diǎn)到平面的距離,的面積為,在正方體中,平面,且平面,,易知三棱錐的體積為.的面積為.設(shè)點(diǎn)到平面的距離為,則,.故答案為:.【點(diǎn)睛】本題考查點(diǎn)到平面的距離的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等體積法的合理運(yùn)用.12、【解析】
根據(jù)得,利用余弦定理即可得解.【詳解】由題:,,,由余弦定理可得:,.故答案為:【點(diǎn)睛】此題考查根據(jù)余弦定理求解三角形的內(nèi)角,關(guān)鍵在于熟練掌握余弦定理公式,準(zhǔn)確計(jì)算求解.13、2【解析】
根據(jù)三視圖還原幾何體,為一個(gè)底面是直角梯形的四棱錐,根據(jù)三視圖的數(shù)據(jù),分別求出其底面積和高,求出體積,得到答案.【詳解】由三視圖還原幾何體如圖所示,幾何體是一個(gè)底面是直角梯形的四棱錐,由三視圖可知,其底面積為,高所以幾何體的體積為.故答案為.【點(diǎn)睛】本題考查三視圖還原幾何體,求四棱錐的體積,屬于簡(jiǎn)單題.14、【解析】
利用正弦函數(shù)的定義域求得值域,即的范圍,再根據(jù)反余弦函數(shù)的定義可求得的取值范圍.【詳解】因?yàn)榍?,所以,則根據(jù)反余弦函數(shù)的定義可得,則的取值范圍是.故答案為:【點(diǎn)睛】本題考查了正弦函數(shù)的定義域和值域,考查了反余弦函數(shù)的定義,屬于基礎(chǔ)題.15、【解析】
由二倍角公式降冪,再由兩角和的正弦公式化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,結(jié)合正弦函數(shù)性質(zhì)可求得值域.【詳解】,,則,.故答案為:.【點(diǎn)睛】本題考查三角恒等變換(二倍角公式、兩角和的正弦公式),考查正弦函數(shù)的的單調(diào)性和最值.求解三角函數(shù)的性質(zhì)的性質(zhì)一般都需要用三角恒等變換化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,然后結(jié)合正弦函數(shù)的性質(zhì)得出結(jié)論.16、1【解析】
依題意,這是一個(gè)等比數(shù)列,公比為2,前7項(xiàng)和為181,由此能求出結(jié)果.【詳解】依題意,這是一個(gè)等比數(shù)列,公比為2,前7項(xiàng)和為181,∴181,解得a1=1.故答案為:1.【點(diǎn)睛】本題考查等比數(shù)列的首項(xiàng)的求法,考查等比數(shù)列的前n項(xiàng)和公式,是基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)取的中點(diǎn)的中點(diǎn),證明,由根據(jù)線面垂直判定定理可得,可得平面,結(jié)合面面垂直的判定定理,可得平面平面;
(2)過作,連接BM,可以得到為二面角的平面角,解三角形即可求出二面角的正切值.【詳解】解:(1)取BE的中點(diǎn)F.
AE的中點(diǎn)G,連接GD,CF∴,GF∥AB又∵,CD∥AB∴CD∥GF,CD=GF,∴CFGD是平行四邊形,∴CF∥GD,又∵CF⊥BF,CF⊥AB∴CF⊥平面ABE∵CF∥DG∴DG⊥平面ABE,∵DG?平面ABE∴平面ABE⊥平面ADE;(2)∵AB=BE,∴AE⊥BG,∴BG⊥平面ADE,過G作GM⊥DE,連接BM,則BM⊥DE,則∠BMG為二面角A?DE?B的平面角,設(shè)AB=BC=2CD=2,則,在Rt△DCE中,CD=1,CE=2,∴,又,由DE?GM=DG?EG得,所以,故面角的正切值為:.【點(diǎn)睛】本題考查了面面垂直的判定定理及二面角的平面角的作法,重點(diǎn)考查了空間想象能力,屬中檔題.18、(1),;(2).【解析】
(1)根據(jù),即可得解;(2)根據(jù)公式計(jì)算求解.【詳解】(1)由題向量的夾角為60°,所以,,;(2),所以【點(diǎn)睛】此題考查平面向量數(shù)量積,根據(jù)定義計(jì)算兩個(gè)向量的數(shù)量積,求向量的模長(zhǎng)和根據(jù)數(shù)量積與模長(zhǎng)關(guān)系求向量夾角.19、見解析【解析】
根據(jù)三角函數(shù)定義列方程解得,再根據(jù)三角函數(shù)定義求的值.【詳解】,(1)當(dāng)時(shí),.(2)當(dāng)時(shí),,解得.當(dāng)時(shí),;當(dāng)時(shí),.綜上當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.【點(diǎn)睛】本題考查三角函數(shù)定義,考查基本分析求解能力,屬基礎(chǔ)題.20、(1)見證明;(2)見證明【解析】
(1)設(shè)與的交點(diǎn)為,連結(jié),證明,再由線面平行的判定可得平面;(2)由為線段的中點(diǎn),點(diǎn)是的中點(diǎn),證得四邊形為平行四邊形,得到,進(jìn)一步得到平面.再由平面,結(jié)合面面平行的判定可得平面平面.【詳解】證明:(1)設(shè)與的交點(diǎn)為,連結(jié),∵四邊形為平行四邊形,∴為中點(diǎn),又是的中點(diǎn),∴是三角形的中位線,則,又∵平面,平面,∴平面;(2)∵為線段的中點(diǎn),點(diǎn)是的中點(diǎn),∴且,則四邊形為平行四邊形,∴,又∵平面,平面,∴平面.又平面,,且平面,平面,∴平面平面.【點(diǎn)睛】本題考查直線與平面,平面與平面平行的判定,考查空間想象能力與思維能力,是中檔題.21、(1)周期為π,最大值為2.(2)【解析】
(1)利用倍角公式降冪,展開兩角差的余弦,將函數(shù)的關(guān)系式化簡(jiǎn)余弦型函數(shù),可求出函數(shù)的周期及最值;(2)由f(π﹣A),求解角A,再利用余弦定理和基本不等式求a的最小值.【詳解】(1)函數(shù)f(x)=2cos2x﹣cos(2x)=1+co
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)人電車租車合同范本
- 公司民間借款合同范本
- 辦公裝修協(xié)議合同范例
- 公路養(yǎng)護(hù)補(bǔ)充協(xié)議合同范本
- 二手車銷售中心合同范本
- 健身俱樂部就業(yè)合同范本
- 勞務(wù)薪酬合同范例
- 2025年度家庭寵物養(yǎng)護(hù)保姆服務(wù)合同
- 公司如資金合同范本
- 兼職勞務(wù)合同范本乙方
- 病例展示(皮膚科)
- GB/T 39750-2021光伏發(fā)電系統(tǒng)直流電弧保護(hù)技術(shù)要求
- 教科版五年級(jí)科學(xué)下冊(cè)【全冊(cè)全套】課件
- (更新版)HCIA安全H12-711筆試考試題庫(kù)導(dǎo)出版-下(判斷、填空、簡(jiǎn)答題)
- 糖尿病運(yùn)動(dòng)指導(dǎo)課件
- 完整版金屬學(xué)與熱處理課件
- T∕CSTM 00640-2022 烤爐用耐高溫粉末涂料
- 304不銹鋼管材質(zhì)證明書
- 民用機(jī)場(chǎng)不停航施工安全管理措施
- 港口集裝箱物流系統(tǒng)建模與仿真技術(shù)研究-教學(xué)平臺(tái)課件
- 新教科版2022年五年級(jí)科學(xué)下冊(cè)第2單元《船的研究》全部PPT課件(共7節(jié))
評(píng)論
0/150
提交評(píng)論