2023年河北省棗強(qiáng)縣棗強(qiáng)中學(xué)數(shù)學(xué)高一下期末質(zhì)量檢測模擬試題含解析_第1頁
2023年河北省棗強(qiáng)縣棗強(qiáng)中學(xué)數(shù)學(xué)高一下期末質(zhì)量檢測模擬試題含解析_第2頁
2023年河北省棗強(qiáng)縣棗強(qiáng)中學(xué)數(shù)學(xué)高一下期末質(zhì)量檢測模擬試題含解析_第3頁
2023年河北省棗強(qiáng)縣棗強(qiáng)中學(xué)數(shù)學(xué)高一下期末質(zhì)量檢測模擬試題含解析_第4頁
2023年河北省棗強(qiáng)縣棗強(qiáng)中學(xué)數(shù)學(xué)高一下期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.函數(shù)的部分圖象如圖所示,函數(shù),則下列結(jié)論正確的是()A.B.函數(shù)與的圖象均關(guān)于直線對(duì)稱C.函數(shù)與的圖象均關(guān)于點(diǎn)對(duì)稱D.函數(shù)與在區(qū)間上均單調(diào)遞增2.在中,,BC邊上的高等于,則()A. B. C. D.3.已知,,且,則實(shí)數(shù)等于()A.-1 B.-9 C.3 D.94.已知是第二象限角,且,則的值為A. B. C. D.5.在中,,設(shè)向量與的夾角為,若,則的取值范圍是()A. B. C. D.6.點(diǎn)、、、在同一個(gè)球的球面上,,.若四面體的體積的最大值為,則這個(gè)球的表面積為()A. B. C. D.7.已知等比數(shù)列的公比為正數(shù),且,則()A. B. C. D.8.設(shè)等差數(shù)列,則等于()A.120 B.60 C.54 D.1089.設(shè)a,b,c為的內(nèi)角所對(duì)的邊,若,且,那么外接圓的半徑為A.1 B. C.2 D.410.已知直線:,:,若:;,則是的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.已知cosθ,θ∈(π,2π),則sinθ=_____,tan_____.12.過P(1,2)的直線把圓分成兩個(gè)弓形,當(dāng)其中劣孤最短時(shí)直線的方程為_________.13.方程,的解集是__________.14.已知,若對(duì)任意,均有,則的最小值為______;15.已知是邊長為4的等邊三角形,為平面內(nèi)一點(diǎn),則的最小值為__________.16.已知函數(shù),為的反函數(shù),則_______(用反三角形式表示).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)數(shù)列的前項(xiàng)和,數(shù)列為等比數(shù)列,且.(1)求數(shù)列和的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.18.如圖,菱形ABCD與正三角形BCE的邊長均為2,且平面ABCD⊥平面BCE,平面ABCD,.(I)求證:平面ABCD;(II)求證:平面ACF⊥平面BDF.19.已知等差數(shù)列an滿足a3=5,a6=a4(1)求數(shù)列an,b(2)設(shè)cn=anbn220.已知圓(1)求圓關(guān)于直線對(duì)稱的圓的標(biāo)準(zhǔn)方程;(2)過點(diǎn)的直線被圓截得的弦長為8,求直線的方程;(3)當(dāng)取何值時(shí),直線與圓相交的弦長最短,并求出最短弦長.21.?dāng)?shù)列滿足,.(1)試求出,,;(2)猜想數(shù)列的通項(xiàng)公式并用數(shù)學(xué)歸納法證明.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

由三角函數(shù)圖像可得,,再結(jié)合三角函數(shù)圖像的性質(zhì)逐一判斷即可得解.【詳解】解:由函數(shù)的部分圖象可得,,即,則,又函數(shù)圖像過點(diǎn),則,即,又,即,即,則對(duì)于選項(xiàng)A,顯然錯(cuò)誤;對(duì)于選項(xiàng)B,函數(shù)的圖像關(guān)于直線對(duì)稱,即B錯(cuò)誤;對(duì)于選項(xiàng)C,函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱,即C錯(cuò)誤;對(duì)于選項(xiàng)D,函數(shù)的增區(qū)間為,函數(shù)的增區(qū)間為,又,,即D正確,故選:D.【點(diǎn)睛】本題考查了利用三角函數(shù)圖像求函數(shù)解析式,重點(diǎn)考查了三角函數(shù)圖像的性質(zhì),屬中檔題.2、C【解析】試題分析:設(shè),故選C.考點(diǎn):解三角形.3、C【解析】

由可知,再利用坐標(biāo)公式求解.【詳解】因?yàn)?,且,所以,即,解得,故選:C.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算,解題關(guān)鍵是明確.4、B【解析】試題分析:因?yàn)槭堑诙笙藿?,且,所以.考點(diǎn):兩角和的正切公式.5、A【解析】

根據(jù)向量與的夾角的余弦值,得到,然后利用正弦定理,表示出,根據(jù)的范圍,得到的范圍.【詳解】因?yàn)橄蛄颗c的夾角為,且,所以,在中,由正弦定理,得,所以,因?yàn)?,所以,所?故選:A.【點(diǎn)睛】本題考查向量的夾角,正弦定理解三角形,求正弦函數(shù)的值域,屬于簡單題.6、D【解析】

根據(jù)幾何體的特征,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時(shí)體積最大,可得與面垂直時(shí)體積最大,從而求出球的半徑,即可求出球的表面積.【詳解】根據(jù)題意知,、、三點(diǎn)均在球心的表面上,且,,,則的外接圓半徑為,的面積為,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時(shí)體積最大,所以,當(dāng)與面垂直時(shí)體積最大,最大值為,,設(shè)球的半徑為,則在直角中,,即,解得,因此,球的表面積為.故選:D.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是球內(nèi)接多面體,球的表面積,其中分析出何時(shí)四面體體積取最大值,是解答的關(guān)鍵.7、D【解析】設(shè)公比為,由已知得,即,又因?yàn)榈缺葦?shù)列的公比為正數(shù),所以,故,故選D.8、C【解析】

題干中只有一個(gè)等式,要求前9項(xiàng)的和,可利用等差數(shù)列的性質(zhì)解決?!驹斀狻?,選C.【點(diǎn)睛】題干中只有一個(gè)等式,要求前9項(xiàng)的和,可利用等差數(shù)列的性質(zhì)解決。也可將等式全部化為的表達(dá)式,整體代換計(jì)算出9、A【解析】

由得b2+c2-a2=bc.利用余弦定理,可得A=.再利用正弦定理可得2R=,可得R.【詳解】∵,∴,整理得b2+c2-a2=bc,根據(jù)余弦定理cosA=,可得cosA=∵A∈(0,π),∴A=由正弦定理可得2R==,解得R=1,故選A【點(diǎn)睛】已知三邊關(guān)系,可轉(zhuǎn)化為接近余弦定理的形式,直接運(yùn)用余弦定理理解三角形,注意整體代入思想.10、C【解析】因?yàn)橹本€:,:,所以或,即是的必要不充分條件.故選C.點(diǎn)睛:本題考查兩條直線平行的判定;由直線的一般式判定兩直線平行或垂直時(shí),若將一般式化成斜截式,往往需要討論斜率是否存在,為了避免討論,記住以下結(jié)論:已知直線,.則或;.二、填空題:本大題共6小題,每小題5分,共30分。11、﹣2.【解析】

由題意利用同角三角函數(shù)的基本關(guān)系,二倍角公式,求得式子的值.【詳解】由,,知,則,.故答案為:,.【點(diǎn)睛】本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角公式的應(yīng)用,屬于基礎(chǔ)題.12、【解析】

首先根據(jù)圓的幾何性質(zhì),可分析出當(dāng)點(diǎn)是弦的中點(diǎn)時(shí),劣弧最短,利用圓心和弦的中點(diǎn)連線與直線垂直,可求得直線方程.【詳解】當(dāng)劣弧最短時(shí),即劣弧所對(duì)的弦最短,當(dāng)點(diǎn)是弦的中點(diǎn)時(shí),此時(shí)弦最短,也即劣弧最短,圓:,圓心,,,直線方程是,即,故填:.【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系,以及圓的幾何性質(zhì),屬于基礎(chǔ)題型.13、【解析】

用正弦的二倍角公式展開,得到,分兩種情況討論得出結(jié)果.【詳解】解:即,即:或.①由,,得.②由,,得或.綜上可得方程,的解集是:故答案為【點(diǎn)睛】本題考查正弦函數(shù)的二倍角公式,以及特殊角的正余弦值.14、【解析】

根據(jù)對(duì)任意,均有,分析得到,再根據(jù)正弦型函數(shù)的最值公式求解出的最小值.【詳解】因?yàn)閷?duì)任意,均有,所以,所以,所以,所以.故答案為:.【點(diǎn)睛】本題考查正弦型函數(shù)的應(yīng)用,難度一般.正弦型函數(shù)的最值一定是在對(duì)稱軸的位置取到,因此正弦型函數(shù)取最大值與最小值時(shí)對(duì)應(yīng)的自變量的差的絕對(duì)值最小為,此時(shí)最大值與最小值對(duì)應(yīng)的對(duì)稱軸相鄰.15、-1.【解析】分析:可建立坐標(biāo)系,用平面向量的坐標(biāo)運(yùn)算解題.詳解:建立如圖所示的平面直角坐標(biāo)系,則,設(shè),∴,易知當(dāng)時(shí),取得最小值.故答案為-1.點(diǎn)睛:求最值問題,一般要建立一個(gè)函數(shù)關(guān)系式,化幾何最值問題為函數(shù)的最值,本題通過建立平面直角坐標(biāo)系,把向量的數(shù)量積用點(diǎn)的坐標(biāo)表示出來后,再用配方法得出最小值,根據(jù)表達(dá)式的幾何意義也能求得最大值.16、【解析】

先將轉(zhuǎn)化為,,然后求出即可【詳解】因?yàn)樗运运运园雅c互換可得即所以故答案為:【點(diǎn)睛】本題考查的是反函數(shù)的求法,較簡單三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)【解析】

(1)通過求解數(shù)列的通項(xiàng)公式,從而可以求出首項(xiàng)與公比,即可得到的通項(xiàng)公式;(2)化簡,利用錯(cuò)位相減法求解數(shù)列的和即可.【詳解】(1)∴,∴,∵,∴,∴,,∵,,∴,從而,∵數(shù)列為等比數(shù)列∴數(shù)列的公比為,從而;(2)∵,,∴∴∴,∴.【點(diǎn)睛】本題考查已知求的通項(xiàng)公式以及數(shù)列求和,考查計(jì)算能力.在通過求的通項(xiàng)公式時(shí),不要忽略時(shí)的情況.18、(Ⅰ)見解析;(Ⅱ)見解析.【解析】(1)添加輔助線,通過證明線線平行來證明線面平行.(2)通過證明線面垂直面,來證明面面.(Ⅰ)證明:如圖,過點(diǎn)作于,連接,∴.∵平面⊥平面,平面,平面平面,∴⊥平面,又∵⊥平面,,∴,.∴四邊形為平行四邊形.∴.∵平面,平面,∴平面.(Ⅱ)證明:面,,又四邊形是菱形,,又,面,又面,從而面面.點(diǎn)晴:本題考查的是空間線面的平行和垂直關(guān)系.第一問要考查的是線面平行,通過先證明,得四邊形為平行四邊形.證得,可得平面,這里對(duì)于線面平行的條件平面,平面要寫全;第二問中通過先證明面,再結(jié)合面,從而面面.19、(1)an=2n-1,【解析】

(1)利用等差數(shù)列、等比數(shù)列的通項(xiàng)公式即可求得;(2)由(1)知,cn=anbn2【詳解】(1)設(shè)等差數(shù)列an的公差為d,等比數(shù)列bn的公比為因?yàn)閍6=a4+4所以an由b3b5又顯然b4必與b2同號(hào),所以所以q2=b所以bn(2)由(1)知,cn則Tn12①-②,得1=1+1-所以Tn【點(diǎn)睛】用錯(cuò)位相減法求和應(yīng)注意的問題(1)要善于識(shí)別題目類型,特別是等比數(shù)列公比為負(fù)數(shù)的情形;(2)在寫出“Sn”與“qSn”的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”以便下一步準(zhǔn)確寫出“Sn-qSn”的表達(dá)式;(3)在應(yīng)用錯(cuò)位相減法求和時(shí),若等比數(shù)列的公比為參數(shù),應(yīng)分公比等于1和不等于1兩種情況求解.20、(1);(2)或;(3)【解析】

(1)設(shè),根據(jù)圓心與關(guān)于直線對(duì)稱,列出方程組,求得的值,即可求解;(2)由圓的弦長公式,求得,根據(jù)斜率分類討論,求得直線的斜率,即可求解;(3)由直線,得直線過定點(diǎn),根據(jù)時(shí),弦長最短,即可求解.【詳解】(1)由題意,圓的圓心,半徑為,設(shè),因?yàn)閳A心與關(guān)于直線對(duì)稱,所以,解得,則,半徑,所以圓標(biāo)準(zhǔn)方程為:(2)設(shè)點(diǎn)到直線距離為,圓的弦長公式,得,解得,①當(dāng)斜率不存在時(shí),直線方程為,滿足題意②當(dāng)斜率存在時(shí),設(shè)直線方程為,則,解得,所以直線的方程為,綜上,直線方程為或(3)由直線,可化為,可得直線過定點(diǎn),當(dāng)時(shí),弦長最短,又由,可得,此時(shí)最短弦長為.【點(diǎn)睛】本題主要考查了圓的對(duì)稱圓的求解,以及直線與圓的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論