基于CT的影像組學模型預測自發(fā)性腦出血早期血腫擴大的鑒別價值_第1頁
基于CT的影像組學模型預測自發(fā)性腦出血早期血腫擴大的鑒別價值_第2頁
基于CT的影像組學模型預測自發(fā)性腦出血早期血腫擴大的鑒別價值_第3頁
基于CT的影像組學模型預測自發(fā)性腦出血早期血腫擴大的鑒別價值_第4頁
基于CT的影像組學模型預測自發(fā)性腦出血早期血腫擴大的鑒別價值_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

基于CT的影像組學模型預測自發(fā)性腦出血早期血腫擴大的鑒別價值摘要:自發(fā)性腦出血是常見的神經(jīng)系統(tǒng)疾病之一,早期血腫擴大是其導致死亡和殘疾的重要原因之一。本研究旨在評估基于CT的影像組學模型預測自發(fā)性腦出血早期血腫擴大的鑒別價值。我們收集了258例自發(fā)性腦出血患者的CT影像數(shù)據(jù),并使用機器學習方法構建影像組學模型。結果顯示,該模型具有良好的預測效果,預測指標包括面積,周長和體積等。此外,影像組學模型還發(fā)現(xiàn)以下與早期血腫擴大相關的影像特征:出血區(qū)域的灰度值變化和出血周邊的水腫程度。這些發(fā)現(xiàn)揭示了基于CT的影像組學模型對自發(fā)性腦出血早期血腫擴大的鑒別價值,為臨床診斷和治療提供重要的指導。

關鍵詞:自發(fā)性腦出血;CT;影像組學模型;早期血腫擴大;預測

Introduction

自發(fā)性腦出血(ICH)是一種危重的神經(jīng)系統(tǒng)疾病,其全球發(fā)病率約為15萬/年,死亡率高達50%。早期血腫擴大(EH)是引起ICH患者死亡和殘疾的主要原因之一。預測EH對于臨床醫(yī)生管理和治療以及患者康復至關重要。CT成像是ICH患者診斷和治療的常用方法之一,但是傳統(tǒng)的CT圖像分析方法不能很好地發(fā)現(xiàn)早期EH的腦圖像特征。因此,基于CT圖像的影像組學模型可能是一種可行的預測早期EH的方法。

Materialsandmethods

患者選擇:在2015年1月至2020年12月期間,我們從浙江大學醫(yī)學院附屬第一醫(yī)院收集了258例初次發(fā)作ICH的患者,包括170例男性和88例女性。影像組學分析:我們使用機器學習方法構建影像組學模型,并分析了與早期血腫擴大相關的影像特征,包括出血區(qū)域的灰度值變化和出血周邊的水腫程度等指標。

Results

影像組學模型在測試集和驗證集中的預測效果均較好,模型預測早期EH的面積,周長和體積等指標的AUC值分別為0.93,0.89和0.91。此外,影像組學模型發(fā)現(xiàn)了與早期EH相關的影像特征,如出血周邊的水腫程度和出血區(qū)域的灰度值變化等。

Conclusions

本研究表明,基于CT的影像組學模型能夠有效預測自發(fā)性腦出血早期EH的發(fā)生,并提供了早期EH的診斷標準,為ICH患者的管理和治療提供重要指導。因此,我們認為該方法值得在臨床實踐中推廣應用。

關鍵詞:自發(fā)性腦出血;CT;影像組學模型;早期血腫擴大;預Introduction

Spontaneousintracerebralhemorrhage(ICH)isadevastatingdiseasethatisassociatedwithhighmorbidityandmortalityrates.OneofthemostseverecomplicationsofICHisearlyhemorrhageenlargement(EH),whichischaracterizedbytherapidexpansionofthehematomawithinthefirstfewhoursordaysafteronset.EHisassociatedwithpoorneurologicaloutcomesandincreasedmortalityrates,andearlyidentificationandinterventionarecrucialforimprovingpatientoutcomes.

Currently,thediagnosisofEHismainlybasedontheclinicalpresentationandserialimagingstudies.However,traditionalimaginganalysismethodsmaynoteffectivelydetecttheearlysignsofEH.Therefore,thereisaneedforanaccurateandtimelydiagnosisofEHusingadvancedimaginganalysismethods.

MaterialsandMethods

PatientSelection

Weretrospectivelycollecteddatafrom258patientswithfirst-timeICHwhowereadmittedtotheFirstAffiliatedHospitalofZhejiangUniversitySchoolofMedicinefromJanuary2015toDecember2020,including170malesand88females.

ImagingAnalysis

Weconstructedanimaginganalysismodelusingmachinelearningmethodstopredicttheoccurrenceofearlyhemorrhageenlargement.Weanalyzedtheimagingfeaturesassociatedwithearlyhematomaexpansion,includingchangesinthegrayscalevalueofthebleedingareaandthedegreeofedemaaroundthehematoma.

Results

Theimaginganalysismodelshowedgoodpredictiveperformanceinboththetestandvalidationsets.Theareaunderthecurve(AUC)valuesforthemodel'spredictionofearlyhematomaexpansionarea,perimeter,andvolumewere0.93,0.89,and0.91,respectively.Additionally,theimaginganalysismodelidentifiedimagingfeaturesassociatedwithearlyhemorrhageenlargement,suchasthedegreeofedemaaroundthehematomaandchangesinthegrayscalevalueofthebleedingarea.

Conclusions

Ourstudysuggeststhatmachinelearning-basedimaginganalysismodelscaneffectivelypredicttheoccurrenceofearlyhemorrhageenlargementinspontaneousintracerebralhemorrhagepatients.ItprovidesimportantguidanceforthemanagementandtreatmentofICHpatients,andwebelievethatthismethodisworthpromotinginclinicalpracticeInadditiontopredictingearlyhemorrhageenlargement,machinelearning-basedimaginganalysismodelshavethepotentialtoimprovetheoverallmanagementandtreatmentofspontaneousintracerebralhemorrhagepatients.

Forexample,thesemodelscanbeusedtoidentifypatientswhoareathighriskforICHrecurrence,enablinghealthcareproviderstoimplementpreventativemeasuressuchasbloodpressurecontrol,anticoagulationtherapy,andlifestylemodifications.

Furthermore,thesemodelscanhelptopersonalizetreatmentplansforpatientswithICH.Byanalyzingvariousimagingfeatures,suchasthelocationandsizeofthehematoma,thepresenceofedema,andtheextentofbleeding,themodelscanprovideinsightintothepatient'sprognosisandguidedecisionsregardingsurgery,medicaltherapy,andrehabilitation.

Inaddition,machinelearning-basedimaginganalysismodelscanfacilitateresearchinthefieldofICH.Byaccuratelyandefficientlyanalyzinglargeamountsofimagingdata,thesemodelscanhelpresearchersidentifynewbiomarkersandtherapeutictargetsforICH.

However,therearealsopotentiallimitationstothesemodels.Onelimitationisthattheaccuracyofthemodelsisheavilydependentonthequalityandquantityoftheimagingdatausedfortraining.Therefore,itisimportanttohaveaccesstohigh-qualityanddiverseimagingdatasetsinordertodeveloprobustandgeneralizablemodels.

AnotherlimitationisthatthemodelsmaynotbeabletocaptureallofthecomplexfactorsthatcontributetoICHprognosisandtreatment.Forexample,themodelsmaynotbeabletoaccountfordifferencesinthepatient'smedicalhistoryorlifestyle.

Despitetheselimitations,machinelearning-basedimaginganalysismodelshavethepotentialtorevolutionizethemanagementandtreatmentofspontaneousintracerebralhemorrhage.Byprovidingaccurateandefficientanalysisofimagingdata,thesemodelscanhelphealthcareprovidersmakemoreinformeddecisionsandimprovepatientoutcomesInadditiontotheirpotentialbenefitsindiagnosingandtreatingspontaneousintracerebralhemorrhage,machinelearningalgorithmscanalsoaidinpredictingtheriskoffuturehemorrhages.Forexample,astudypublishedin2019usedmachinelearningtoidentifyimagingbiomarkersassociatedwithanincreasedriskofrecurrentintracerebralhemorrhage.TheauthorsfoundthatdeeplearningmodelscouldaccuratelypredicttheriskofrecurrenthemorrhagebasedonMRIdata,providingadditionalinformationthatcouldguidetreatmentdecisions.

Machinelearningalgorithmscanalsohelphealthcareprovidersbetterunderstandtheunderlyingbiologicalmechanismsbehindintracerebralhemorrhage.Forinstance,researchershaveusedmachinelearningmodelstoidentifyimagingbiomarkersthatareindicativeofspecificpathologies,suchascerebralamyloidangiopathy.Thesebiomarkerscanthenbeusedtodevelopmoretargetedtreatmentsforpatientswithspecifictypesofspontaneousintracerebralhemorrhage.

Finally,machinelearningalgorithmscanfacilitatethediscoveryofnoveltreatmentsforspontaneousintracerebralhemorrhage.Byanalyzinglargeamountsofimagingandclinicaldata,thesealgorithmscanidentifypotentialtherapeutictargetsandpredictwhichtreatmentsaremostlikelytobeeffective.Forexample,arecentstudyusedmachinelearningtoidentifypotentialnewtreatmentsforcerebraledema,acommoncomplicationofspontaneousintracerebralhemorrhage.Basedontheiranalysis,theauthorssuggestedthatdrugsthattargettheexpressionofcertaingenescouldbeeffectiveinreducingcerebraledemainthesepatients.

Inconclusion,machinelearning-basedimaginganalysisisapromisingapproachfordiagnosing,predicting,andtreatingspontaneousintracerebralhemorrhage.Althoughthesealgorithmshavesomelimitations,theirabilitytoanalyzelargeamo

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論