版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數的部分圖象如圖所示,為了得到的圖象,只需將的圖象A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位2.如圖所示,在正方形ABCD中,E為AB的中點,F為CE的中點,則A. B.C. D.3.實數滿足,則的取值范圍為()A. B. C. D.4.長方體共頂點的三個相鄰面面積分別為,這個長方體的頂點在同一個球面上,則這個球的表面積為()A. B. C. D.5.已知等差數列an的前n項和為Sn,若a8=12,S8A.-2 B.2 C.-1 D.16.已知兩個等差數列,的前項和分別為,,若對任意的正整數,都有,則等于()A.1 B. C. D.7.不等式的解集是:A. B.C. D.8.數列1,3,6,10,…的一個通項公式是()A. B.C. D.9.若實數a、b滿足條件,則下列不等式一定成立的是A. B. C. D.10.各項不為零的等差數列中,,數列是等比數列,且,則()A.4 B.8 C.16 D.64二、填空題:本大題共6小題,每小題5分,共30分。11.函數的部分圖像如圖所示,則的值為________.12.已知等差數列的前項和為,若,則=_______13.如圖,一棟建筑物AB高(30-10)m,在該建筑物的正東方向有一個通信塔CD.在它們之間的地面M點(B、M、D三點共線)測得對樓頂A、塔頂C的仰角分別是15°和60°,在樓頂A處測得對塔頂C的仰角為30°,則通信塔CD的高為______m.14.當,時,執(zhí)行完如圖所示的一段程序后,______.15.點從點出發(fā),沿單位圓順時針方向運動弧長到達點,則點的坐標為__________.16.對于數列滿足:,其前項和為記滿足條件的所有數列中,的最大值為,最小值為,則___________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(1)求的最值、單調遞減區(qū)間;(2)先把的圖象向左平移個單位,再把圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數的圖象,求的值.18.在中,角的對邊分別為,已知(1)求;(2)若為銳角三角形,且邊,求面積的取值范圍.19.已知0<α<π,cos(1)求tanα+(2)求sin2α+120.已知點,圓.(1)求過點M的圓的切線方程;(2)若直線與圓相交于A,B兩點,且弦AB的長為,求的值.21.已知函數的圖象向左平移個單位長度后與函數圖象重合.(1)求和的值;(2)若函數,求函數的單調遞減區(qū)間及圖象的對稱軸方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:由圖象知,,,,,得,所以,為了得到的圖象,所以只需將的圖象向右平移個長度單位即可,故選D.考點:三角函數圖象.2、D【解析】
由平面向量基本定理和向量運算求解即可【詳解】根據題意得:,又,,所以.故選D.【點睛】本題主要考查了平面向量的基本定理的簡單應用,屬于基礎題.3、A【解析】
畫出可行域,平移基準直線到可行域邊界的位置,由此求得目標函數的取值范圍.【詳解】畫出可行域如下圖所示,平移基準直線到可行域邊界的位置,由圖可知目標函數分別在出取的最小值和最大值,最小值為,最大值為,故的取值范圍是,故選A.【點睛】本小題主要考查線性規(guī)劃求最大值和最小值,考查數形結合的數學思想方法,屬于基礎題.4、A【解析】
設長方體的棱長為,球的半徑為,根據題意有,再根據球的直徑是長方體的體對角線求解.【詳解】設長方體的棱長為,球的半徑為,根據題意,,解得,所以,所以外接球的表面積,故選:A【點睛】本題主要考查了球的組合體問題,還考查了運算求解的能力,屬于基礎題.5、B【解析】
直角利用待定系數法可得答案.【詳解】因為S8=8a1+a82【點睛】本題主要考查等差數列的基本量的相關計算,難度不大.6、B【解析】
利用等差數列的性質將化為同底的,再化簡,將分子分母配湊成前n項和的形式,再利用題干條件,計算?!驹斀狻俊叩炔顢盗?,的前項和分別為,,對任意的正整數,都有,∴.故選B.【點睛】本題考查等差數列的性質的應用,屬于中檔題。7、C【解析】
把不等式轉化為不等式,即可求解,得到答案.【詳解】由題意,不等式,等價于,解得,即不等式的解集為,故選C.【點睛】本題主要考查了一元二次不等式的求解,其中解答中熟記一元二次不等式的解法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.8、C【解析】
試題分析:可采用排除法,令和,驗證選項,只有,使得,故選C.考點:數列的通項公式.9、D【解析】
根據題意,由不等式的性質依次分析選項,綜合即可得答案.【詳解】根據題意,依次分析選項:對于A、,時,有成立,故A錯誤;對于B、,時,有成立,故B錯誤;對于C、,時,有成立,故C錯誤;對于D、由不等式的性質分析可得若,必有成立,則D正確;故選:D.【點睛】本題考查不等式的性質,對于錯誤的結論舉出反例即可.10、D【解析】
根據等差數列性質可求得,再利用等比數列性質求得結果.【詳解】由等差數列性質可得:又各項不為零,即由等比數列性質可得:本題正確選項:【點睛】本題考查等差數列、等比數列性質的應用,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由圖可得,,求出,得出,利用,然后化簡即可求解【詳解】由題圖知,,所以,所以.由正弦函數的對稱性知,所以答案:【點睛】本題利用函數的周期特性求解,難點在于通過圖像求出函數的解析式和函數的最小正周期,屬于基礎題12、【解析】
利用等差數列前項和,可得;利用等差數列的性質可得,然后求解三角函數值即可.【詳解】等差數列的前項和為,因為,所以;又,所以.故答案為:.【點睛】本題考查等差數列的前項和公式和等差數列的性質的應用,熟練掌握和若,則是解題的關鍵.13、60【解析】
由已知可以求出、、的大小,在中,利用銳角三角函數,可以求出.在中,運用正弦定理,可以求出.在中,利用銳角三角函數,求出.【詳解】由題意可知:,,由三角形內角和定理可知.在中,.在中,由正弦定理可知:,在中,.【點睛】本題考查了銳角三角函數、正弦定理,考查了數學運算能力.14、1【解析】
模擬程序運行,可得出結論.【詳解】時,滿足,所以.故答案為:1.【點睛】本題考查程序框圖,考查條件結構,解題時模擬程序運行即可.15、【解析】
由題意可得OQ恰好是角的終邊,利用任意角的三角函數的定義,求得Q點的坐標.【詳解】點P從點出發(fā),沿單位圓順時針方向運動弧長到達Q點,則OQ恰好是角的終邊,故Q點的橫坐標,縱坐標為,故答案為:【點睛】本題主要考查任意角的三角函數的定義,屬于容易題.16、1【解析】
由,,,,,分別令,3,4,5,求得的前5項,觀察得到最小值,,計算即可得到的值.【詳解】由,,,,,可得,解得,又,,可得或,又,,,可得或5;或6;或或8;又,,,,可得或6或7;或7或8;或8或9或10或12;或10或12或1.綜上可得的最大值,最小值為,則.故答案為:1.【點睛】本題考查數列的和的最值,注意運用元素與集合的關系,運用列舉法,考查判斷能力和運算能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),,單調遞減區(qū)間為;(2).【解析】
(1)函數,得最大值為,并解不等式,得到函數的單調遞減區(qū)間;(2)由平移變換、伸縮變換得到函數,再把代入求值.【詳解】(1)因為,所以當時,,當時,.由,所以函數的單調遞減區(qū)間為.(2)的圖象向左平移個單位得:,再把圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變)得:,當時,.【點睛】本題考查三角函數中的輔助角公式、三角函數的性質、圖象變換等知識,對三角函數圖象與性質進行綜合考查.18、(1);(2)【解析】
(1)利用正弦定理邊化角,再利用和角的正弦公式化簡即得B的值;(2)先根據已知求出,再求面積的取值范圍.【詳解】解:(1),即可得,∵∴∵∴∴由,可得;(2)若為銳角三角形,且,由余弦定理可得,由三角形為銳角三角形,可得且解得,可得面積【點睛】本題主要考查正弦定理余弦定理解三角形,考查三角形面積的取值范圍的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.19、(1)12;(2)1【解析】
(1)利用同角三角函數平方和商數關系求得tanα;利用兩角和差正切公式求得結果;(2)利用二倍角公式化簡所求式子,分子分母同時除以cos2α【詳解】(1)∵0<α<π,cosα=-3∴tanα=(2)sin=【點睛】本題考查利用同角三角函數、兩角和差正切公式、二倍角的正余弦公式化簡求值問題,關鍵是能夠利用求解關于正余弦的齊次式的方式,將問題轉化為與tanα20、(1)或.(2)【解析】
(1)分切線的斜率不存在與存在兩種情況分析.當斜率存在時設方程為,再根據圓心到直線的距離等于半徑求解即可.(2)利用垂徑定理根據圓心到直線的距離列出等式求解即可.【詳解】解:(1)由題意知圓心的坐標為,半徑,當過點M的直線的斜率不存在時,方程為.由圓心到直線的距離知,此時,直線與圓相切.當過點M的直線的斜率存在時,設方程為,即.由題意知,解得,∴方程為.故過點M的圓的切線方程為或.(2)∵圓心到直線的距離為,∴,解得.【點睛】本題主要考查了直線與圓相切與相交時的求解.注意直線過定點時分析斜率不存在與存在兩種情況.直線與圓相切用圓心到直線的距離等于半徑列式,直線與圓相交用垂徑定理列式.屬于中檔題.21、(1),;(2)減區(qū)間為,對稱軸方程為【解析】
(1)先根據平移后周
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學年新教材高中政治 綜合探究一教學實錄 新人教版必修第一冊
- 專業(yè)認識實習報告匯編6篇
- 行為目標怎么寫
- 八年級歷史上冊 第三單元 資產階級民主革命與中華民國的建立 第8課 革命先行者孫中山教學實錄 新人教版
- 社會實踐活動過程
- 6 感官總動員 教學實錄-2024-2025學年科學一年級上冊蘇教版
- 五年級我想對您說500字滿分作文10篇參考
- 員工引咎辭職辭職報告15篇
- 第6課 認識機器人構件(教學實錄)2023-2024學年六年級下冊信息技術閩教版
- 個人小學述職報告范文集合七篇
- 65mn彈簧鋼熱處理工藝
- 調試人員微波技術學習課件
- 足球教練員素質和角色
- 初中八年級語文課件 桃花源記【省一等獎】
- 2024年四川成都市興蓉集團有限公司招聘筆試參考題庫含答案解析
- 《傣族舞蹈教程》課件
- 專題19 詩詞鑒賞(考點精講)-【中職專用】中職高考語文一輪復習講練測(四川適用)
- 2024北京大興區(qū)初三(上)期末化學試卷及答案
- 生物制藥行業(yè)的經營管理制度
- 臥式單面多軸鉆孔組合機床動力滑臺液壓系統(tǒng)
評論
0/150
提交評論