2023屆黑龍江省綏化市安達(dá)第七中學(xué)高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第1頁
2023屆黑龍江省綏化市安達(dá)第七中學(xué)高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第2頁
2023屆黑龍江省綏化市安達(dá)第七中學(xué)高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第3頁
2023屆黑龍江省綏化市安達(dá)第七中學(xué)高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第4頁
2023屆黑龍江省綏化市安達(dá)第七中學(xué)高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.執(zhí)行如圖所示的程序框圖,若輸入,則輸出的數(shù)等于()A. B. C. D.2.已知圓和兩點(diǎn),,.若圓上存在點(diǎn),使得,則的最小值為()A. B. C. D.3.如下圖,在四棱錐中,平面ABCD,,,,則異面直線PA與BC所成角的余弦值為()A. B. C. D.4.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,若,,則一定是()A.直角三角形 B.鈍角三角形 C.等腰直角三角形 D.等邊三角形5.已知點(diǎn),,則直線的斜率是()A. B. C.5 D.16.已知2弧度的圓心角所對的弧長為2,則這個(gè)圓心角所對的弦長是()A. B. C. D.7.如圖,在正方體中,已知,分別為棱,的中點(diǎn),則異面直線與所成的角等于()A.90° B.60°C.45° D.30°8.已知等差數(shù)列的前項(xiàng)和,若,則()A.25 B.39 C.45 D.549.如圖,在中,,是邊上的高,平面,則圖中直角三角形的個(gè)數(shù)是()A. B. C. D.10.在,,,是邊上的兩個(gè)動點(diǎn),且,則的取值范圍為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,則______,______.12.已知圓柱的底面圓的半徑為2,高為3,則該圓柱的側(cè)面積為________.13.已知向量,,且,則______.14.某中學(xué)調(diào)查了某班全部45名同學(xué)參加書法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表所示(單位:人).參加書法社團(tuán)未參加書法社團(tuán)參加演講社團(tuán)85未參加演講社團(tuán)230若從該班隨機(jī)選l名同學(xué),則該同學(xué)至少參加上述一個(gè)社團(tuán)的概率為__________.15.已知數(shù)列滿足則的最小值為__________.16.在中,,,是的中點(diǎn).若,則________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知海島在海島北偏東,,相距海里,物體甲從海島以海里/小時(shí)的速度沿直線向海島移動,同時(shí)物體乙從海島沿著海島北偏西方向以海里/小時(shí)的速度移動.(1)問經(jīng)過多長時(shí)間,物體甲在物體乙的正東方向;(2)求甲從海島到達(dá)海島的過程中,甲、乙兩物體的最短距離.18.求函數(shù)的最大值19.銳角三角形的內(nèi)角A,B,C的對邊分別為a,b,c,且.(1)求A;(2)若,,求面積.20.在中,角的對邊分別是,且滿足.(1)求角的大??;(2)若,邊上的中線的長為,求的面積.21.如圖,是正方形,是該正方形的中心,是平面外一點(diǎn),底面,是的中點(diǎn).求證:(1)平面;(2)平面平面.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

模擬執(zhí)行循環(huán)體的過程,即可得到結(jié)果.【詳解】根據(jù)程序框圖,模擬執(zhí)行如下:,滿足,,滿足,,滿足,,不滿足,輸出.故選:B.【點(diǎn)睛】本題考查程序框圖中循環(huán)體的執(zhí)行,屬基礎(chǔ)題.2、D【解析】

因?yàn)?,所以點(diǎn)的軌跡為以為直徑的圓,故點(diǎn)是兩圓的交點(diǎn),根據(jù)圓與圓的位置關(guān)系,即可求出.【詳解】根據(jù)可知,點(diǎn)的軌跡為以為直徑的圓,故點(diǎn)是圓和圓的交點(diǎn),因此兩圓相切或相交,即,亦即.故的最小值為.故選:D.【點(diǎn)睛】本題主要考查圓與圓的位置關(guān)系的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力,屬于基礎(chǔ)題.3、B【解析】

作出異面直線PA與BC所成角,結(jié)合三角形的知識可求.【詳解】取的中點(diǎn),連接,如圖,因?yàn)?,,所以四邊形是平行四邊形,所以;所以或其補(bǔ)角是異面直線PA與BC所成角;設(shè),則,;因?yàn)?,所以;因?yàn)槠矫鍭BCD,所以,在三角形中,.故選:B.【點(diǎn)睛】本題主要考查異面直線所成角的求解,作出異面直線所成角,結(jié)合三角形知識可求.側(cè)重考查直觀想象的核心素養(yǎng).4、D【解析】

利用余弦定理、等邊三角形的判定方法即可得出.【詳解】由余弦定理得,則,即,所以.∵∴是等邊三角形.故選D.【點(diǎn)睛】本題考查了余弦定理、等邊三角形的判定方法,考查了推理能力與計(jì)算能力,熟練掌握余弦定理是解答本題的關(guān)鍵.5、D【解析】

根據(jù)直線的斜率公式,準(zhǔn)確計(jì)算,即可求解,得到答案.【詳解】由題意,根據(jù)直線的斜率公式,可得直線的斜率,故選D.【點(diǎn)睛】本題主要考查了直線的斜率公式的應(yīng)用,其中解答中熟記直線的斜率公式,準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.6、D【解析】

由弧長公式求出圓半徑,再在直角三角形中求解.【詳解】,如圖,設(shè)是中點(diǎn),則,,,∴.故選D.【點(diǎn)睛】本題考查扇形弧長公式,在求弦長時(shí),常在直角三角形中求解.7、B【解析】

連接,可證是異面直線與所成的角或其補(bǔ)角,求出此角即可.【詳解】連接,因?yàn)?,分別為棱,的中點(diǎn),所以,又正方體中,所以是異面直線與所成的角或其補(bǔ)角,是等邊三角形,=60°.所以異面直線與所成的角為60°.故選:B.【點(diǎn)睛】本題考查異面直線所成的角,解題時(shí)需根據(jù)定義作出異面直線所成的角,同時(shí)給出證明,然后在三角形中計(jì)算.8、A【解析】

設(shè)等差數(shù)列的公差為,從而根據(jù),即可求出,這樣根據(jù)等差數(shù)列的前項(xiàng)和公式即可求出.【詳解】解:設(shè)等差數(shù)列的公差為,則由,得:,,,故選:A.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式和等差數(shù)列的前項(xiàng)和公式,屬于基礎(chǔ)題.9、C【解析】

根據(jù)線面垂直得出一些相交直線垂直,以及找出題中一些已知的相交直線垂直,由這些條件找出圖中的直角三角形.【詳解】①平面,,都是直角三角形;②是直角三角形;③是直角三角形;④由得平面,可知:也是直角三角形.綜上可知:直角三角形的個(gè)數(shù)是個(gè),故選C.【點(diǎn)睛】本題考查直角三角形個(gè)數(shù)的確定,考查相交直線垂直,解題時(shí)可以充分利用直線與平面垂直的性質(zhì)得到,考查推理能力,屬于中等題.10、A【解析】由題意,可以點(diǎn)為原點(diǎn),分別以為軸建立平面直角坐標(biāo)系,如圖所示,則點(diǎn)的坐標(biāo)分別為,直線的方程為,不妨設(shè)點(diǎn)的坐標(biāo)分別為,,不妨設(shè),由,所以,整理得,則,即,所以當(dāng)時(shí),有最小值,當(dāng)時(shí),有最大值.故選A.點(diǎn)睛:此題主要考查了向量數(shù)量積的坐標(biāo)運(yùn)算,以及直線方程和兩點(diǎn)間距離的計(jì)算等方面的知識與技能,還有坐標(biāo)法的運(yùn)用等,屬于中高檔題,也是??伎键c(diǎn).根據(jù)題意,把運(yùn)動(即的位置在變)中不變的因素()找出來,通過坐標(biāo)法建立合理的直角坐標(biāo)系,把點(diǎn)的坐標(biāo)表示出來,再通過向量的坐標(biāo)運(yùn)算,列出式子,討論其最值,從而問題可得解.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由的值,可求出的值,再判斷角的范圍,可判斷出,進(jìn)而將平方,可求出答案.【詳解】由題意,,因?yàn)?,所以,即;又因?yàn)?,所以,即,而,由于,可知,所以,則,即.故答案為:;.【點(diǎn)睛】本題考查同角三角函數(shù)基本關(guān)系的應(yīng)用,考查二倍角公式的應(yīng)用,考查學(xué)生的計(jì)算求解能力,屬于中檔題.12、【解析】

圓柱的側(cè)面打開是一個(gè)矩形,長為底面的周長,寬為圓柱的高,即,帶入數(shù)據(jù)即可.【詳解】因?yàn)閳A柱的底面圓的半徑為2,所以圓柱的底面圓的周長為,則該圓柱的側(cè)面積為.【點(diǎn)睛】此題考察圓柱側(cè)面積公式,屬于基礎(chǔ)題目.13、【解析】

根據(jù)的坐標(biāo)表示,即可得出,解出即可.【詳解】,,.【點(diǎn)睛】本題主要考查平行向量的坐標(biāo)關(guān)系應(yīng)用.14、【解析】

直接利用公式得到答案.【詳解】至少參加上述一個(gè)社團(tuán)的人數(shù)為15故答案為【點(diǎn)睛】本題考查了概率的計(jì)算,屬于簡單題.15、【解析】

先利用累加法求出an=1+n2﹣n,所以,設(shè)f(n),由此能導(dǎo)出n=5或6時(shí)f(n)有最小值.借此能得到的最小值.【詳解】解:∵an+1﹣an=2n,∴當(dāng)n≥2時(shí),an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+1=n2﹣n+1且對n=1也適合,所以an=n2﹣n+1.從而設(shè)f(n),令f′(n),則f(n)在上是單調(diào)遞增,在上是遞減的,因?yàn)閚∈N+,所以當(dāng)n=5或6時(shí)f(n)有最小值.又因?yàn)?,,所以的最小值為故答案為【點(diǎn)睛】本題考查了利用遞推公式求數(shù)列的通項(xiàng)公式,考查了累加法.還考查函數(shù)的思想,構(gòu)造函數(shù)利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性.16、【解析】

在中,由已知利用余弦定理可得,結(jié)合,解得,可求,在中,由余弦定理可得的值.【詳解】由題意,在中,由余弦定理可得:可得:所以:…………①又……………②所以聯(lián)立①②,解得.所以在中,由余弦定理得:即故答案為:【點(diǎn)睛】本題考查利用余弦定理解三角形,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)小時(shí);(2)海里.【解析】

試題分析:(1)設(shè)經(jīng)過小時(shí),物體甲在物體乙的正東方向,因?yàn)樾r(shí),所以.則物體甲與海島的距離為海里,物體乙與海島距離為海里.在中由正弦定理可求得的值.(2)在中用余弦定理求,再根據(jù)二次函數(shù)求的最小值.試題解析:解:(1)設(shè)經(jīng)過小時(shí),物體甲在物體乙的正東方向.如圖所示,物體甲與海島的距離為海里,物體乙與海島距離為海里,,中,由正弦定理得:,即,則.(2)由(1)題設(shè),,,由余弦定理得:∵,∴當(dāng)時(shí),海里.考點(diǎn):1正弦定理;2余弦定理;3二次函數(shù)求最值.18、最大值為5【解析】

本題首先可以根據(jù)同角三角函數(shù)關(guān)系以及配方將函數(shù)化簡為,然后根據(jù)即可得出函數(shù)的最大值.【詳解】,因?yàn)椋援?dāng)時(shí),即,函數(shù)最大,令,,故最大值為.【點(diǎn)睛】本題考查同角三角函數(shù)關(guān)系以及一元二次函數(shù)的相關(guān)性質(zhì),考查的公式為,考查計(jì)算能力,體現(xiàn)了綜合性,是中檔題.19、(1),(2)【解析】

(1)利用三角函數(shù)的和差公式化簡已知等式可得,結(jié)合為銳角可得的值.(2)由余弦定理可得,解得的值,根據(jù)三角形的面積公式即可求解.【詳解】(1)∵,∴∵∴可得:∵A,C為銳角,∴,可得:(2)∵∴由余弦定理,可得:,即,解得:或3,因?yàn)闉殇J角三角形,所以需滿足所以所以的面積為【點(diǎn)睛】本題主要考查了三角函數(shù)恒等變換及余弦定理,三角形的面積公式在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.20、(1)(2)【解析】

(1)先后利用正弦定理余弦定理化簡得到,即得B的大?。唬?)設(shè),則,所以,利用余弦定理求出m的值,再求的面積.【詳解】解:(1)因?yàn)?,由正弦定理,得,?由余弦定理,得.因?yàn)?,所?(2)因?yàn)椋?設(shè),則,所以.在中,由余弦定理得,得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論