2022-2023學年河南省駐馬店市名校高一數(shù)學第二學期期末學業(yè)水平測試試題含解析_第1頁
2022-2023學年河南省駐馬店市名校高一數(shù)學第二學期期末學業(yè)水平測試試題含解析_第2頁
2022-2023學年河南省駐馬店市名校高一數(shù)學第二學期期末學業(yè)水平測試試題含解析_第3頁
2022-2023學年河南省駐馬店市名校高一數(shù)學第二學期期末學業(yè)水平測試試題含解析_第4頁
2022-2023學年河南省駐馬店市名校高一數(shù)學第二學期期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若關于x,y的方程組無解,則()A. B. C.2 D.2.若平面α∥平面β,直線平面α,直線n?平面β,則直線與直線n的位置關系是()A.平行 B.異面C.相交 D.平行或異面3.經統(tǒng)計某射擊運動員隨機命中的概率可視為,為估計該運動員射擊4次恰好命中3次的概率,現(xiàn)采用隨機模擬的方法,先由計算機產生0到9之間取整數(shù)的隨機數(shù),用0,1,2沒有擊中,用3,4,5,6,7,8,9表示擊中,以4個隨機數(shù)為一組,代表射擊4次的結果,經隨機模擬產生了20組隨機數(shù):7525,0293,7140,9857,0347,4373,8638,7815,1417,55500371,6233,2616,8045,6011,3661,9597,7424,7610,4281根據(jù)以上數(shù)據(jù),則可估計該運動員射擊4次恰好命中3次的概率為()A. B. C. D.4.有一個容量為200的樣本,樣本數(shù)據(jù)分組為,,,,,其頻率分布直方圖如圖所示.根據(jù)樣本的頻率分布直方圖估計樣本數(shù)據(jù)落在區(qū)間內的頻數(shù)為()A.48 B.60 C.64 D.725.角的終邊經過點且,則的值為()A.-3 B.3 C.±3 D.56.圓心為且過原點的圓的方程是()A.B.C.D.7.在中,,是的內心,若,其中,動點的軌跡所覆蓋的面積為()A. B. C. D.8.若,則是()A.等邊三角形 B.等腰三角形C.直角或等腰三角形 D.等腰直角三角形9.已知數(shù)列滿足,則()A.10 B.20 C.100 D.20010.已知直線過點且與直線垂直,則該直線方程為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的部分圖象如圖所示,則函數(shù)的解析式為______.12.設當時,函數(shù)取得最大值,則______.13.已知二面角為60°,動點P、Q分別在面、內,P到的距離為,Q到的距離為,則P、Q兩點之間距離的最小值為.14.已知向量(1,2),(x,4),且∥,則_____.15.若數(shù)列滿足(),且,,__.16.在△ABC中,a、b、c分別為角A、B、C的對邊,若b·cosC=c·cosB,且cosA=,則cosB的值為_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,是第四象限角,求和的值.18.如圖,在△ABC中,A(5,–2),B(7,4),且AC邊的中點M在y軸上,BC的中點N在x軸上.(1)求點C的坐標;(2)求△ABC的面積.19.已知是等差數(shù)列,滿足,,數(shù)列滿足,,且是等比數(shù)列.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.20.已知是一個公差大于的等差數(shù)列,且滿足,數(shù)列滿足等式:(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.21.已知a,b,c分別為ΔABC三個內角A,B,C的對邊,且.(1)求角A的大小;(2)若,且ΔABC的面積為,求a的值;(3)若,求的范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

由題可知直線與平行,再根據(jù)平行公式求解即可.【詳解】由題,直線與平行,故.故選:A【點睛】本題主要考查了二元一次方程組與直線間的位置關系,屬于基礎題.2、D【解析】

由面面平行的定義,可得兩直線無公共點,可得所求結論.【詳解】平面α∥平面β,可得兩平面α,β無公共點,即有直線與直線也無公共點,可得它們異面或平行,故選:D.【點睛】本題考查空間線線的位置關系,考查面面平行的定義,屬于基礎題.3、A【解析】

根據(jù)20組隨機數(shù)可知該運動員射擊4次恰好命中3次的隨機數(shù)共8組,據(jù)此可求出對應的概率.【詳解】由題意,該運動員射擊4次恰好命中3次的隨機數(shù)為:7525,0347,7815,5550,6233,8045,3661,7424,共8組,則該運動員射擊4次恰好命中3次的概率為.故答案為A.【點睛】本題考查了利用隨機模擬數(shù)表法求概率,考查了學生對基礎知識的掌握.4、B【解析】

由,求出,計算出數(shù)據(jù)落在區(qū)間內的頻率,即可求解.【詳解】由,解得,所以數(shù)據(jù)落在區(qū)間內的頻率為,所以數(shù)據(jù)落在區(qū)間內的頻數(shù),故選B.【點睛】本題主要考查了頻率分布直方圖,頻率、頻數(shù),屬于中檔題.5、B【解析】

根據(jù)三角函數(shù)的定義建立方程關系即可.【詳解】因為角的終邊經過點且,所以則解得【點睛】本題主要考查三角函數(shù)的定義的應用,應注意求出的b為正值.6、D【解析】試題分析:設圓的方程為,且圓過原點,即,得,所以圓的方程為.故選D.考點:圓的一般方程.7、A【解析】

由且,易知動點的軌跡為以為鄰邊的平行四邊形的內部(含邊界),在中,由,利用余弦定理求得邊,再由和,求得內切圓的半徑,從而得到,再由動點的軌跡所覆蓋的面積得解.【詳解】因為且,根據(jù)向量加法的平行四邊形運算法則,所以動點的軌跡為以為鄰邊的平行四邊形的內部(含邊界),因為在中,,所以由余弦定理得:,所以,即,解得:,,所以.設的內切圓的半徑為,所以所以.所以.所以動點的軌跡所覆蓋的面積為:.故選:A【點睛】本題主要考查了動點軌跡所覆蓋的面積的求及正弦定理,余弦定理的應用,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.8、D【解析】

先根據(jù)題中條件,結合正弦定理得到,求出角,同理求出角,進而可判斷出結果.【詳解】因為,由正弦定理可得,所以,即,因為角為三角形內角,所以;同理,;所以,因此,是等腰直角三角形.故選D【點睛】本題主要考查判定三角形的形狀問題,熟記正弦定理即可,屬于??碱}型.9、C【解析】

由題可得數(shù)列是以為首相,為公差的等差數(shù)列,求出數(shù)列的通項公式,進而求出【詳解】因為,所以數(shù)列是以為首項,為公差的等差數(shù)列,所以,則【點睛】本題考查由遞推公式證明數(shù)列是等差數(shù)列以及等差數(shù)列的通項公式,屬于一般題.10、A【解析】

根據(jù)垂直關系求出直線斜率為,再由點斜式寫出直線?!驹斀狻坑芍本€與直線垂直,可知直線斜率為,再由點斜式可知直線為:即.故選A.【點睛】本題考查兩直線垂直,屬于基礎題。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)三角函數(shù)圖象依次求得的值.【詳解】由圖象可知,,所以,故,將點代入上式得,因為,所以.故.故答案為:【點睛】本小題主要考查根據(jù)三角函數(shù)的圖象求三角函數(shù)的解析式,屬于基礎題.12、;【解析】f(x)=sinx-2cosx==sin(x-φ),其中sinφ=,cosφ=,當x-φ=2kπ+(k∈Z)時,函數(shù)f(x)取得最大值,即θ=2kπ++φ時,函數(shù)f(x)取到最大值,所以cosθ=-sinφ=-.13、【解析】

如圖

分別作于A,于C,于B,于D,

連CQ,BD則,,

當且僅當,即點A與點P重合時取最小值.

故答案選C.【點睛】14、.【解析】

根據(jù)求得,從而可得,再求得的坐標,利用向量模的公式,即可求解.【詳解】由題意,向量,則,解得,所以,則,所以.【點睛】本題主要考查了向量平行關系的應用,以及向量的減法和向量的模的計算,其中解答中熟記向量的平行關系,以及向量的坐標運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.15、1【解析】

由數(shù)列滿足,即,得到數(shù)列的奇數(shù)項和偶數(shù)項分別構成公比為的等比數(shù)列,利用等比數(shù)列的極限的求法,即可求解.【詳解】由題意,數(shù)列滿足,即,又由,,所以數(shù)列的奇數(shù)項構成首項為1,公比為,偶數(shù)項構成首項為,公比為的等比數(shù)列,當為奇數(shù)時,可得,當為偶數(shù)時,可得.所以.故答案為:1.【點睛】本題主要考查了等比數(shù)列的定義,以及無窮等比數(shù)列的極限的計算,其中解答中得出數(shù)列的奇數(shù)項和偶數(shù)項分別構成公比為的等比數(shù)列是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.16、【解析】

利用余弦定理表示出與,代入已知等式中,整理得到,再利用余弦定理表示出,將及的值代入用表示出,將表示出的與代入中計算,即可求出值.【詳解】由題意,由余弦定理得,代入,得,整理得,所以,即,整理得,即,則,故答案為.【點睛】本題考查了解三角形的綜合應用,高考中經常將三角變換與解三角形知識綜合起來命題,如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理實現(xiàn)邊角互化;以上特征都不明顯時,則要考慮兩個定理都有可能用到.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、,【解析】

利用誘導公式可求的值,根據(jù)是第四象限角可求的值,最后根據(jù)三角函數(shù)的基本關系式可求的值,根據(jù)誘導公式及倍角公式可求的值.【詳解】,又是第四象限角,所以,所以,.【點睛】本題考查同角的三角函數(shù)的基本關系式、誘導公式以及二倍角公式,此題屬于基礎題.18、(1)(–5,–4)(2)【解析】

(1)設點,根據(jù)題意寫出關于的方程組,得到點坐標;(2)由兩點間距離公式求出,再由兩點得到直線的方程,利用點到直線的距離公式,求出點到的距離,由三角形面積公式得到答案.【詳解】(1)由題意,設點,根據(jù)AC邊的中點M在y軸上,BC的中點N在x軸上,根據(jù)中點公式,可得,解得,所以點的坐標是.(2)因為,得.,所以直線的方程為,即,故點到直線的距離,所以的面積.【點睛】本題考查中點坐標公式,兩點間距離公式,點到直線的距離公式,屬于簡單題.19、(1),;(2)【解析】試題分析:(1)利用等差數(shù)列,等比數(shù)列的通項公式先求得公差和公比,即得到結論;(2)利用分組求和法,由等差數(shù)列及等比數(shù)列的前n項和公式即可求得數(shù)列前n項和.試題解析:(Ⅰ)設等差數(shù)列{an}的公差為d,由題意得d===1.∴an=a1+(n﹣1)d=1n設等比數(shù)列{bn﹣an}的公比為q,則q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1,∵數(shù)列{1n}的前n項和為n(n+1),數(shù)列{2n﹣1}的前n項和為1×=2n﹣1,∴數(shù)列{bn}的前n項和為;考點:1.等差數(shù)列性質的綜合應用;2.等比數(shù)列性質的綜合應用;1.數(shù)列求和.20、【解析】

(1)利用等差中項得到關于,的方程組,利用通項公式求得公差,則數(shù)列的通項公式可求;(2)把數(shù)列的通項公式代入,得,作差可得,再由數(shù)列的分組求和可得數(shù)列的前項和.【詳解】(1)在等差數(shù)列中,由,得,又,可得或.,,則..(2)由,得,,即,滿足上式,.則,數(shù)列的前項和,.【點睛】本題考查數(shù)列遞推式、臨差法求數(shù)列通項、數(shù)列的分組求和等知識,考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論