




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Chapter7
MultipleRegressionAnalysiswithQualitativeInformationWooldridge:IntroductoryEconometrics:AModernApproach,5eQualitativeInformationExamples:gender,race,industry,region,ratinggrade,…AwaytoincorporatequalitativeinformationistousedummyvariablesTheymayappearasthedependentorasindependentvariablesAsingledummyindependentvariableDummyvariable:=1ifthepersonisawoman=0ifthepersonisman=thewagegain/lossifthepersonisawomanratherthanaman(holdingotherthingsfixed)MultipleRegressionAnalysis:QualitativeInformationGraphicalIllustrationAlternativeinterpretationofcoefficient:i.e.thedifferenceinmeanwagebetweenmenandwomenwiththesamelevelofeducation.InterceptshiftMultipleRegressionAnalysis:QualitativeInformationDummyvariabletrapThismodelcannotbeestimated(perfectcollinearity)Whenusingdummyvariables,onecategoryalwayshastobeomitted:Alternatively,onecouldomittheintercept:ThebasecategoryaremenThebasecategoryarewomenDisadvantages:
1)Moredifficulttotestfordiffe-rencesbetweentheparameters2)R-squaredformulaonlyvalidifregressioncontainsinterceptMultipleRegressionAnalysis:QualitativeInformationEstimatedwageequationwithinterceptshiftDoesthatmeanthatwomenarediscriminatedagainst?Notnecessarily.Beingfemalemaybecorrelatedwithotherproduc-tivitycharacteristicsthathavenotbeencontrolledfor.Holdingeducation,experience,andtenurefixed,womenearn1.81$lessperhourthanmenMultipleRegressionAnalysis:QualitativeInformationComparingmeansofsubpopulationsdescribedbydummiesDiscussionItcaneasilybetestedwhetherdifferenceinmeansissignificantThewagedifferencebetweenmenandwomenislargerifnootherthingsarecontrolledfor;i.e.partofthedifferenceisduetodiffer-encesineducation,experienceandtenurebetweenmenandwomenNotholdingotherfactorsconstant,womenearn2.51$perhourlessthanmen,i.e.thedifferencebetweenthemeanwageofmenandthatofwomenis2.51$.MultipleRegressionAnalysis:QualitativeInformationFurtherexample:EffectsoftraininggrantsonhoursoftrainingThisisanexampleofprogramevaluationTreatmentgroup(=grantreceivers)vs.controlgroup(=nogrant)Istheeffectoftreatmentontheoutcomeofinterestcausal?HourstrainingperemployeeDummyindicatingwhetherfirmreceivedtraininggrantMultipleRegressionAnalysis:QualitativeInformationUsingdummyexplanatoryvariablesinequationsforlog(y)DummyindicatingwhetherhouseisofcolonialstyleAsthedummyforcolonialstylechangesfrom0to1,thehousepriceincreasesby5.4percentagepointsMultipleRegressionAnalysis:QualitativeInformationHoldingotherthingsfixed,marriedwomenearn19.8%lessthansinglemen(=thebasecategory)Usingdummyvariablesformultiplecategories1)Definemembershipineachcategorybyadummyvariable2)Leaveoutonecategory(whichbecomesthebasecategory)MultipleRegressionAnalysis:QualitativeInformationIncorporatingordinalinformationusingdummyvariablesExample:CitycreditratingsandmunicipalbondinterestratesMunicipalbondrateCreditratingfrom0-4(0=worst,4=best)Thisspecificationwouldprobablynotbeappropriateasthecreditratingonlycontainsordinalinformation.Abetterwaytoincorporatethisinformationistodefinedummies:Dummiesindicatingwhethertheparticularratingapplies,e.g.CR1=1ifCR=1andCR1=0otherwise.Alleffectsaremeasuredincomparisontotheworstrating(=basecategory).MultipleRegressionAnalysis:QualitativeInformationInteractionsinvolvingdummyvariablesAllowingfordifferentslopesInterestinghypotheses=interceptmen=interceptwomen=slopemen=slopewomenInteractiontermThereturntoeducationisthesameformenandwomenThewholewageequationisthesameformenandwomenMultipleRegressionAnalysis:QualitativeInformationGraphicalillustrationInteractingboththeinterceptandtheslopewiththefemaledummyenablesonetomodelcompletelyindependentwageequationsformenandwomenMultipleRegressionAnalysis:QualitativeInformationEstimatedwageequationwithinteractiontermNoevidenceagainsthypothesisthatthereturntoeducationisthesameformenandwomenDoesthismeanthatthereisnosignificantevidenceoflowerpayforwomenatthesamelevelsofeduc,exper,andtenure?No:thisisonlytheeffectforeduc=0.Toanswerthequestiononehastorecentertheinteractionterm,e.g.aroundeduc=12.5(=averageeducation).MultipleRegressionAnalysis:QualitativeInformationTestingfordifferencesinregressionfunctionsacrossgroupsUnrestrictedmodel(containsfullsetofinteractions)Restrictedmodel(sameregressionforbothgroups)CollegegradepointaverageStandardizedaptitudetestscoreHighschoolrankpercentileTotalhoursspentincollegecoursesMultipleRegressionAnalysis:QualitativeInformationNullhypothesisEstimationoftheunrestrictedmodelAllinteractioneffectsarezero,i.e.thesameregressioncoefficientsapplytomenandwomenTestedindividually,thehypothesisthattheinteractioneffectsarezerocannotberejectedMultipleRegressionAnalysis:QualitativeInformationJointtestwithF-statisticAlternativewaytocomputeF-statisticinthegivencaseRunseparateregressionsformenandforwomen;theunrestrictedSSRisgivenbythesumoftheSSRofthesetworegressionsRunregressionfortherestrictedmodelandstoreSSRIfthetestiscomputedinthiswayitiscalledtheChow-TestImportant:TestassumesaconstanterrorvarianceaccrossgroupsNullhypothesisisrejectedMultipleRegressionAnalysis:QualitativeInformationABinarydependentvariable:thelinearprobabilitymodelLinearregressionwhenthedependentvariableisbinaryLinearprobabilitymodel(LPM)Ifthedependentvariableonlytakesonthevalues1and0Inthelinearprobabilitymodel,thecoefficientsdescribetheeffectoftheexplanatoryvariablesontheprobabilitythaty=1MultipleRegressionAnalysis:QualitativeInformationDoesnotlooksignificant(butseebelow)Example:Laborforceparticipationofmarriedwomen=1ifinlaborforce,=0otherwiseNon-wifeincome(inthousanddollarsperyear)Ifthenumberofkidsundersixyearsincreasesbyone,thepro-probabilitythatthewomanworksfallsby26.2%MultipleRegressionAnalysis:QualitativeInformationExample:Femalelaborparticipationofmarriedwomen(cont.)Graphfornwifeinc=50,exper=5,age=30,kindslt6=1,kidsge6=0Negativepredictedprobabilitybutnoproblembecausenowomaninthesamplehaseduc<5.Themaximumlevelofeducationinthesampleiseduc=17.Forthegi-vencase,thisleadstoapredictedprobabilitytobeinthelaborforceofabout50%.MultipleRegressionAnalysis:QualitativeInformationDisadvantagesofthelinearprobabilitymodelPredictedprobabilitiesmaybelargerthanoneorsmallerthanzeroMarginalprobabilityeffectssometimeslogicallyimpossibleThelinearprobabilitymodelisnecessarilyheteroskedasticHeterosceasticityconsistentstandarderrorsneedtobecomputedAdvantangesofthelinearprobabilitymodelEasyestimationandinterpretationEstimatedeffectsandpredictionsoftenreasonablygoodinpracticeVarianceofBer-noullivariableMultipleRegressionAnalysis:QualitativeInformationMoreonpolicyanalysisandprogramevaluationExample:EffectofjobtraininggrantsonworkerproductivityPercentageofdefectiveitems=1iffirmreceivedtraininggrant,=0otherwiseNoapparenteffectofgrantonproductivityTreatmentgroup:grantreveivers,Controlgroup:firmsthatreceivednograntGrantsweregivenonafirst-come,first-servedbasis.Thisisnotthesameasgivingthemoutrandomly.Itmightbethecasethatfirmswithlessproductiveworkerssawanopportunitytoimproveproductivityandappliedfirst.MultipleRegressionAnalysis:QualitativeInformationSelf-selectionintotreatmentasasourceforendogeneityInthegivenandinrelatedexamples,thetreatmentstatusisprobablyrelatedtoothercharacteristicsthatalsoinfluen
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四川外國語大學(xué)成都學(xué)院《園林PSSU》2023-2024學(xué)年第二學(xué)期期末試卷
- 5層知識樹課件
- 幼兒園手指游戲課程研究
- 陽光學(xué)院《航天醫(yī)學(xué)工程概論》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年福建省福州市第十中學(xué)高三3.20聯(lián)考考試英語試題含解析
- 開封市龍亭區(qū)2025年小學(xué)六年級數(shù)學(xué)畢業(yè)檢測指導(dǎo)卷含解析
- 重慶第二師范學(xué)院《室內(nèi)深化設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東華宇工學(xué)院《機械設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷
- 浙江省杭州地區(qū)七校聯(lián)考2024-2025學(xué)年高三下學(xué)期第一次統(tǒng)一考試(1月)化學(xué)試題含解析
- 貴州交通職業(yè)技術(shù)學(xué)院《包裝系統(tǒng)設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 中級考試外科基礎(chǔ)題
- 2024高三一模寶山作文題解析及范文(用怎樣的目光看待事物)
- 《紙質(zhì)文物修復(fù)與保護》課件-31古籍書冊結(jié)構(gòu)
- 初三化學(xué)原子的結(jié)構(gòu)課件1
- 《養(yǎng)老護理員》-課件:老年人權(quán)益保障法相關(guān)知識
- 2025年4月自考00262法律文書寫作押題及答案
- 大數(shù)據(jù)時代下的客戶關(guān)系管理與營銷策略優(yōu)化
- 《電力機車制動機》 課件 項目三 CCB-II制動系統(tǒng)
- 中小學(xué)職業(yè)生涯規(guī)劃
- 醫(yī)療放射事故應(yīng)急處理與輻射泄漏處置培訓(xùn)課件
- 門診導(dǎo)醫(yī)護理課件
評論
0/150
提交評論