排列組合方法大全_第1頁
排列組合方法大全_第2頁
排列組合方法大全_第3頁
排列組合方法大全_第4頁
排列組合方法大全_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

第第#頁共6頁只船,但小孩不能單獨乘一只船,這3人共有多少乘船方法.(27)本題還有如下分類標準:*以3個全能演員是否選上唱歌人員為標準*以3個全能演員是否選上跳舞人員為標準*以只會跳舞的2人是否選上跳舞人員為標準都可經(jīng)得到正確結果十四.構造模型策略例14.馬路上有編號為1,2,3,4,5,6,7,8,9的九只路燈,現(xiàn)要關掉其中的3盞,但不能關掉相鄰的2盞或3盞,也不能關掉兩端的2盞,求滿足條件的關燈方法有多少種?解:把此問題當作一個排隊模型在6盞亮燈的5個空隙中插入3個不亮的燈有C3種一些不易理解的排列組合題如果能轉(zhuǎn)化為非常熟悉的模型,如占位填空模型,排隊模型,裝盒模型等,可使問題直觀解決練習題:某排共有10個座位,若4人就坐,每人左右兩邊都有空位,那么不同的坐法有多少種?(120)十五.實際操作窮舉策略例15.設有編號1,2,3,4,5的五個球和編號1,2,3,4,5的五個盒子,現(xiàn)將5個球投入這五個盒子內(nèi),要求每個盒子放一個球,并且恰好有兩個球的編號與盒子的編號相同,有多少投法解:從5個球中取出2個與盒子對號有C2種還剩下3球3盒序號不能對應,利用實際操作法,如果剩下3,4,5號球,3,4,5號盒3號球裝了號盒時,則4,5號球有只有1種裝法,同理3號球裝5號盒時,4,5號球有也只有1種裝法,由分步計數(shù)原理有2C2種55色143號盒4號盒5號盒對于條件比較復雜的排列組合問題,不易用公式進行運算,往往利用窮舉法或畫出樹狀圖會收到意想不到的結果練習題:.同一寢室4人,每人寫一張賀年卡集中起來,然后每人各拿一張別人的賀年卡,則四張賀年卡不同的分配方式有多少種? (9).給圖中區(qū)域涂色,要求相鄰區(qū)域不同色,現(xiàn)有4種可選顏色,則不同的著色方法有72種十六.分解與合成策略例16.30030能被多少個不同的偶數(shù)整除分析:先把30030分解成質(zhì)因數(shù)的乘積形式30030=2X3X5X7X11X13依題意可知偶因數(shù)必先取2,再從其余5個因數(shù)中任取若干個組成乘積,所有的偶因數(shù)為:Ci+C2+C3+C4+C555555練習:正方體的8個頂點可連成多少對異面直線解:我們先從8個頂點中任取4個頂點構成四體共有體共C4-12=58,每個四面體有8 3對異面直線,正方體中的8個頂點可連成3x58=174對異面直線分解與合成策略是排列組合問題的一種最基本的解題策略,把一個復雜問題分解成幾個小問題逐一解決,然后依據(jù)問題分解后的結構,用分類計數(shù)原理和分步計數(shù)原理將問題合成,從而得到問題的答案,每個比較復雜的問題都要用到這種解題策略十七.化歸策略例17.25人排成5X5方陣,現(xiàn)從中選3人,要求3人不在同一行也不在同一列,不同的選法有多少種?

解:將這個問題退化成9人排成3X3方陣,現(xiàn)從中選3人,要求3人不在同一行也不在同一歹U,有多少選法.這樣每行必有1人從其中的一行中選取1人后,把這人所在的行列都劃掉,如此繼續(xù)下去.從3X3方隊中選3人的方法有CiCiC1種。再從5X5方陣選出3X3方陣便可解決問題.從5321X5方隊中選取3行3列有C3C5選法所以從5X5方陣選不在同一行也不在同一列的3人有C3C3C1C1C1選法。5 5 321處理復雜的排列組合問題時可以把一個問題退化成一個簡要的問題,通過解決這個簡要的問題的解決找到解題方法,從而進下一步解決原來的問題練習題:某城市的街區(qū)由12個全等的矩形區(qū)組成其中實線表示馬路,從A走到B的最短路徑有多少種?(C3=35)7十八.數(shù)字排序問題查字典策略例18.由0,1,2,3,4,5六個數(shù)字可以組成多少個沒有重復的比324105大的數(shù)?解:N=2A5+2A4+A3+A2+A1=2975 4321數(shù)字排序問題可用查字典法,查字典的法應從高位向低位查,依次求出其符合要求的個數(shù),根據(jù)分類計數(shù)原理求出其總數(shù)。練習:用0,1,2,3,4,5這六個數(shù)字組成沒有重復的四位偶數(shù),將這些數(shù)字從小到大排列起來,第71個數(shù)是3140十九.樹圖策略例19.3人相互傳球,由甲開始發(fā)球,并作為第一次傳球,經(jīng)過5次傳求后,球仍回到甲的手中,則不同的傳球方式有 N=10對于條件比較復雜的排列組合問題,不易用公式進行運算,樹圖會收到意想不到的結果練習:分別編有1,2,3,4,5號碼的人與椅,其中i號人不坐i號椅(i=1,2,3,4,5)的不同坐法有多少種?N=44二十.復雜分類問題表格策略例20.有紅、黃、蘭色的球各5只,分別標有A、B、C、D、E五個字母,現(xiàn)從中取5只,要求各字母均有且三色齊備,則共有多少種不同的取法紅111223黃123121蘭321211取法C1C154C1C25

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論