




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
亥姆霍茲函數(shù)及吉熱力學(xué)一 亥姆霍dSQW≥dU-T環(huán)T1=T2=T環(huán)=
Hermannvon(1821年-1894年 也稱為:亥姆霍茲自由能 A的SI單位A吉布斯T1=T2=T環(huán)=p1=p2=p環(huán)=或W’≥d(H-TS) H吉布斯函數(shù)(Gibbsfunction)G
JosiahWillard(1839年-1903年G的SI單位
熵判據(jù)“對(duì) 系統(tǒng)或絕熱“
=表示可逆,平衡亥姆霍茲函數(shù) “=”表示可逆,平“<”表示不可吉布斯函數(shù)
“=”表示可“<”表示不可 蒸發(fā)焓為40.69kJmol-1。-1K=-(1ol)(40.69kJol-
-1)/(373.2K)=-109.0JK-109.0JK =-(1ol)(8.314Jol-1K-1K=19.JK0J 例3.5.3C6H6的正常為5℃,摩爾熔化焓9916Jmol-1,=126.8JK1mol=122.6JK1mol
C6H6(s),101325Pa,C6H6(s),101325Pa,C6H6(l),101325Pa,
Q=={1×[126.8×(278.2-268.2)+(-9916)+122.6×(268.2-=-△U=Q+W≈Q=-△S1=nCp,m(l)ln(T2/T1=4.642JK△S2=35.643JK△S3=nCp,m(s)ln(T1/T24.488JKJK△A=△U-T△S=[-9874-268.2×(-35.50)]J=-△G=△H-T△S=[-9874-268.2×(-35.50)]J=-熱力學(xué)第三thethirdlawof熱力學(xué)能斯特?zé)岫ɡ?Nernstheat lim(GH)T1906年,Nernst經(jīng)過系統(tǒng)地研了溫lim(G lim(S T
T limST0K
(凝聚系統(tǒng)或△S 熱力學(xué)第三定律的普朗克0K時(shí)純物質(zhì)凝聚相的熵為limS(B凝聚相)T0或3純物質(zhì)完美晶體的熵,0K時(shí)為零規(guī)定摩爾熵(conventionalmolar,也稱為絕對(duì)摩爾熵(absoluteentropyS(B,T)
標(biāo)準(zhǔn)摩爾熵(standardmolareSe(B,T)
Cp,md 0 以Cp/T為縱如圖所S (Cp/T10K以下,用德拜(Debye)TCp,m=Cm=aT Cp固 ST
dT C(液+b
TCp(氣 從Cp,m數(shù)據(jù)求HCl(g)
S JKlmmSmSm0=∑B反應(yīng)的標(biāo)準(zhǔn)摩爾熵[變(standardmolarentroiesomS 8TmS
Z,TaS
A,TbS
B,Tmmm B 8Tmmm B
8B,T .1熱力學(xué) 熱傳導(dǎo)過程的不可逆氣體混合過程的這是度增加的過程,也是熵增加的過程,熱力學(xué)第二定律,凡是自發(fā)的過程都是 熵的統(tǒng)計(jì)比。例如:有4個(gè)小球分裝在兩個(gè)盒子中,總的分
4(4,0)C44444(2,2)C24
C144
(0,4)C04其中,均勻分布的熱力學(xué)概率?(2,2)最大,為6。4 0VN的函數(shù),兩者之間必定有某SS(Boltzmann認(rèn)為這個(gè)函數(shù)應(yīng)該有如下的對(duì)數(shù)形Skln這就是 k=R/L=1.381×10-23JK 把熱力學(xué)宏觀量S玻耳茲 上的關(guān)系S=klog(后來普朗克將其改寫為S=kBlog 熵與信只計(jì)字?jǐn)?shù)內(nèi)容,單在Shannon從概
ClaudeShannon(1916–2001)找人找到的概率是1/50知道住在三層,找到的概率1/10知道房間號(hào)碼,則概率加大到1 一,讓乙猜它的花色,規(guī)則是允許乙提問題, S=-香農(nóng)把這叫做信息熵,它意味著信息量 S
ln
lni 率Pi的平均。如果所有的Pi=1/N,則上式歸結(jié)為S=-熵S=0.469,從而這句話含信息量I=1—S=0.531bit加。在一個(gè)過程中△I=—△S,即信息量相當(dāng)于負(fù)熵從信息熵 1bit=kln2=0.957×10-23JK- 增加一個(gè)bit,它的熵減少kln2,這只能對(duì)于自然界一切自發(fā)有序(order)的減無(wú)序(disorder)信息(information)熵(entropy)吉布斯佯(又稱吉布斯悖論,Gibbs..麥克斯韋(Maxwell's熱力學(xué)(fundamentalequationofU、H、S、A、G、p、V、TH=U+pVA=U-TSG=H-
U=U(S、H=H(S、A=A(T、G=G(T、(Gibbs-HelmholtzT=(U/S)V=(H/S)p-(U/V)S=-(A/V)T=(H/p)S=(G/p)T(G/p)T=V吉布斯—亥姆霍(Gibbs-HelmholtzGT 1G GSGTS TT T
T T GT p TpAT p Tp麥克斯韋關(guān)系式(Maxwell's
例3.8.1文石和方解石是兩種不同晶型的CaCO3。25℃、100kPa下1mol文石轉(zhuǎn)變?yōu)榉浇馐瘯r(shí),體積增
p1V(文石)dpV(文石)( p2 2p2G3 V(方解石)dpV(方解石22
p1∴△V(p2-p1)=795J例 (UV)T 因?yàn)樗詫?duì)于理想氣體,有p=nRT/V (U/V)T=(TnR/V)-p=0p=[nRT/(V-nb(U/V)T=[TnR/(V-nb)]-p=n2a/V2 H2O(l),101325Pa,-H2O(l),489.2Pa,-H2O(g),489.2Pa,-
H2O(S),101325Pa,-HH2O(S),475.4Pa,-H2O(g),475.4Pa,-△G2△G4△G1+△G5△G3=Vdp≈nRT/pdp==[1×8.314×270.2×ln(475.4=-4=-克拉佩龍Gm()≤Gm() ,T,p)= T→T+dT,p→ )=dGm(
(1799-1864)dGm()=dGm(dGm()dGm()=-Sm()dT+Vm(-Sm()dT+Vm()dp=-Sm()dT+Vm( Sm()
Vm() T
克拉佩龍方程(Clapeyron克勞修△Vm≈Vm(g)≈△vapHm=dp/dT=△vapHm/TVm(氣dln{p}vap RTlnp
vapH
1p1
T2
T1ln{p}vapH 克勞修斯-克拉佩(Clausius-Clapeyron3.9.3Trouton規(guī)則和Antoine楚頓規(guī)則(Trouton’srule)。vap
85JK-13.9.4外壓與蒸氣壓的p g
Vm(1)(pp*pg pg**g g
壓。
pep
時(shí),則 p* 0℃時(shí)冰的融化焓為6008Jmol-1,冰的19.652c3ol18.018c3ol1℃所需的壓力變dpfusH 6008Jmol-(273.15K)(18.01819.652)10-6m3mol- 1.346107PaK-47.6kPa下苯的沸kJol 47.6kPa31800Jmol- 8.314 K- mol-1 353.2K SecondLawofThesecondlawofthermodynamicsisanexpressionoftheuniversallawofincreasingentropy,statingthattheentropyofanisolatedsystemwhichisnotinequilibr time,approachinga umvalueatequilibrium.ThesecondlawtracesitsorigintoFrenchphysicistSadiCarnot's1824paperReflectionsontheMotivePowerofFire,whichpresentedtheviewthatmotivepower(work)isduetothefallofcaloric(heat)fromahottocoldbody(workingsubstance).Insimpleterms,thesecondlawisanexpressionofthefactthatovertime,ignoringtheeffectsofself-gravity,differencesintemperature,pres ,anddensitytendtoevenoutinaphysicalsystemthatisisolatedfromtheoutsideworld.Entropyisameasureofhowfaralongthisevening-outprocesshasprogressed.Therearemanyversionsofthesecondlaw,buttheyallhavethesameeffect,whichistoexinthephenomenonofirreversibilityinTherearemanywaysofstatingthesecondlawofthermodynamics,butallareequivalentinthesensethateachformofthesecondlawlogicallyimplieseveryotherform.Thus,thetheoremsofthermodynamicscanbeprovedusinganyformofthesecondlawandthirdThe
s dlawthatrefersto Inasstema rocessthatoccurswilltendtoincreasethetotalentropyoftheuniverse.Thus,whileasystemcanundergosomephysicalprocessthatdecreasesitsownentropy,theentropyoftheuniverse(whichincludesthesystemanditssurroundings)mustincreaseoverall.(Anexceptiontothisruleisareversibleor"isentropic"process,suchasfrictionlessadiabaticcompression.)Processesthatdecreasetotalentropyoftheuniverseareimpossible.Ifasystemisatequilibrium,bydefinit processesoccur,andthereforethesystemisat umentropy.AlsoduetoRudolfClausiusisthesimlestformulationofthesecondlaw,theheatformulationorClausiusstatement:HeatgenerallycannotspontaneouslyflowfrommaterialatlowertemperaturetoamaterialathigherInformally,"Heatdoesn'tflowfromcoldtohot(withoutinput)",whichisobviouslytruefromeverydayexperience.Forexampleinarefrigerator,heatflowsfromcoldtohot,butonlywhenaidedbyanexternalagent(i.e.thecompressor).Notethatfromthemathe ade heatflowsfromcoldtohothasdecreasingentropy.Thiscanhappeninanon-isolatedsystemifentropyiscreatedelsewhere,suchthatthetotalentropyisconstantorincreasing,asrequiredbythesecondlaw.Forexample,theelectricalenergygoingintoarefrigeratorisconvertedtoheatandgoesouttheback,representinganetincreaseinentropy.Theexceptiontothisisinstatisticallyunlikelyeventswhereparticles
theenergyofcoldparticlesenoughthatthesidegetscolderandthehotsidegetshotter,foraninstant.Sucheventshavebeenobservedatasmallenoughscalewherethelikelihoodofsuchathinghappeningislargeenough.ThemathematicsinvolvedinsuchaneventaredescribedbyfluctuationAthirdformulationofthesecondlaw,byLordKelvin,istheheatengineformulation,orKelvinstatement:Itisimpossibletoconvertheatcomple yintoworkinacyclicprocess.Thatis,itisimpossibletoextractenergybyheatfromahigh-temperatureenergysourceandthenconvertalloftheenergyintowork.Atleastsomeoftheenergymustbepassedontoheatalow- rgys .T ,a atengine h100%e isthermodynamicallyimpossible.Thermodynamicsisatheoryofmacroscopicsystemsandthereforethesecondlawappliesonlytomacroscopicsystemswithwell-definedtemperatures.Forexample,inasystemoftwomolecules,thereisanon-trivialprobabilitythattheslower-moving("cold")moleculetransfersenergytothefaster-moving("hot")molecule.Suchtinysystemsareoutsidethe ofclassicalthermodynamic, heycanbeinvestigatedinquantumthermodynamicsbyusingstatisticalmechanics.Foranyisolatedsstemwithamassofmorethana ico robabilitiesobservingadecreaseinentropyapproachEnergyThesecondlawofthermodynamicsisanaxiomof eat,entropy,andthedirectionnwhichthermodynamicprocessescanoccur.Forexample,thesecondlawimpliesthatheatdoesnotspontaneouslyflowfromacoldmaterialtoahotmaterial,butitallowsheattoflowfromahotmaterialtoacoldmaterial.Roughlyspeaking,thesecondlawsaysthatinanisolatedsystem,concentratedenergydispersesovertime,andconsequentlylessconcentratedenergyisavailabletodousefulwork.Energydispersalalsomeansthatdifferencesintemperature,pressure,anddensityevenout.Againroughlyspeaking,thermodynamicentropyisameasureofenergydispersal,andsothesecondlawiscloselyconnectedwiththeconceptofentropy.HistoryofThefirsttheoryontheconversionofheatintomechanicalworkisduetoNicolasLéonardSadiCarnotin1824.Hewasthefirsttorealizecorrectlythattheefficiencyofthisconversiondependsonthedifferenceoftemperaturebetweenanengineanditsenvironment.RecognizingthesignificanceofJamesPrescottJoule'sworkontheconservationofenergy,RudolfClausiuswasthefirsttoformulatethesecondlawin1850,inthisform:heatdoesnotspontaneouslyflowfromcoldtohotbodies.Whilecommonknowledgenow,thiswas tothecalorictheor ofheat oularatthetime,whichconsideredheatasaliquid.FromtherehewasabletoinferthelawofSadiCarnotandthedefinitionofentropy(1865).Establishedinthe19thcentury,theKelvin- nckstatementoftheSecondLawsays,"Itisimpossibleforanydevicethatoperatesonacycletoreceiveheatfromasinglereservoirandprod ofwork."ThiswasshowntobeequivalenttothestatementofTheErgodichypothesisisalsoimportant approach.Itsaysthat,overlongperiodsoftime,thetimespentinsomeregionofthephasespaceofmicrostateswiththesameenergyisproportionaltothevolumeofthisregion,i.e.thatallaccessiblemicrostatesareequallyprobableoverlongperiodoftime.Equivalently,itsaysthattimeaverageandaverageoverstatisticalensemblearetheUsingquantummechanicsithasbeenshownthatthelocalannentropyisatits umvaluewithanextremelyhighprobability,thusprovingthesecondlaw.[5]Theresultisvalidforalargeclassofisolatedquantumsystems(e.g.agasinacontainer).Whilethefullsystemispureandhasthereforenoentropy,theentanglementbetweengasandcontainergivesrisetoanincreaseofthelocalentropyofthegas.Thisresultisoneofthemostimportantachievementsofquantumthermodynamics.InformalThesecondlawcanbestatedinvarioussuccinctways,Itisimpossibletoproduceworkinthesurroundingsusingacyclicprocessconnectedtoasingleheatreservoir(Kelvin,1851).Itisimpossibletocarryoutacyclicprocessusinganengineconnectedtotwoheatreservoirsthatwillhaveasitsonlyeffectthetransferofa tyofheatfromthelow-temperaturereservoirtothehigh-temperaturereservoir(Clausius,1854).IfthermodynamicworkistobedoneatafiniteenergymustbeThirdLawofThethirdlawofthermodynamicsisastatisticallawofnatureregardingentropyandtheimpossib ofre hinga oftemperature.Themostcommonenunciationofthirdlawofthermodynamicsis:“Asasystemapproachesabsolutezero,allprocessesceaseandtheentropyofthesystemapproachesaminimumvalue.”Notethattheminimumvalueisnotnecessarilyzero,althoughitisalmostalwayszeroinaperfect,purecrystal;seethearticleResidualentropyformoreinformation.Theessenceofthepostulateisthatthesystemnearabsolutezerodependsonlyonthetemperature(i.e.tendstoaconstantindeendentl oftheother arameters.'ThethirdlawwasdevelopedbyWaltherNernst,duringtheyears1906-1912,andisthussometimesreferredtoasNernst'stheoremorNernstspostulate.Thethirdlawofthermodynamicsstatesthattheentropyofasystematzeroisawell-definedconstant.Thisisbecauseasstematzerotemeratureexistsinits roundstatesothatitsentropyisdeterminedonlybythedegeneracyofthegroundstate;or,itstatesthat"itisimpossiblebyanyprocedure,nomatterhowidealised,toreduceanysystemtotheabsolutezerooftemperatureinafinitenumberofoperations".'AnalternativeversionofthethirdlawofthermodynamicsasstatedbyGilbertN.LewisandMerleRandallin1923:“Iftheentropyofeachelementinsome(perfect)crystallinestatebetakenaszeroattheabsolutezerooftemperature,everysubstancehasafinitepositiveentropy;butattheabsolutezerooftemperaturetheentropymay ezero,anddoesso einthecaseo erectcrstallinesubstances.”ThisversionstatesnotonlyΔSwillreachzeroat0Kelvin,butSitselfwillalsoreachzero,atleastforperfectcrystallinesubstances.(Thisstatementisnowknowntohavesomerareexceptions.)Insimpleterms,theThirdLawstatesthattheentropyofmostpuresubstancesapproacheszeroastheabsolutetemperatureapproacheszero.Thislawprovidesan thedeterminationofentropy.Theentropydeterminedrelativetothispointistheabsoluteentropy.Aspecialcaseofthisissystemswithauniquegroundstate,suchasmostcrystallattices.TheentropyofaperfectcrystallatticeasdefinedbyNernst'stheoremiszero(ifit
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 24628-2025醫(yī)療保健產(chǎn)品滅菌生物與化學(xué)指示物測(cè)試設(shè)備
- 農(nóng)村個(gè)人房屋售賣合同范本
- 買賣注冊(cè)公司合同范本
- 出租鋼琴合同范例
- 倒板合同范本
- 出口經(jīng)營(yíng)合同范本
- 個(gè)人租車協(xié)議合同范本
- 醫(yī)療器械借用合同范本
- 制做安裝合同范本
- 別墅門訂購(gòu)合同范本
- GB/T 7631.5-1989潤(rùn)滑劑和有關(guān)產(chǎn)品(L類)的分類第5部分:M組(金屬加工)
- GB/T 41326-2022六氟丁二烯
- GB/T 19470-2004土工合成材料塑料土工網(wǎng)
- GB/T 18913-2002船舶和航海技術(shù)航海氣象圖傳真接收機(jī)
- 高中教師先進(jìn)事跡材料范文六篇
- 烹飪專業(yè)英語(yǔ)課件
- 3d3s基本操作命令教程課件分析
- 人教版三年級(jí)語(yǔ)文下冊(cè)晨讀課件
- 傳染病防治法培訓(xùn)講義課件
- 河南大學(xué)版(2020)信息技術(shù)六年級(jí)下冊(cè)全冊(cè)教案
- 法律方法階梯實(shí)用版課件
評(píng)論
0/150
提交評(píng)論