2022-2023學(xué)年貴州省畢節(jié)織金縣市級(jí)名校中考聯(lián)考數(shù)學(xué)試題含解析_第1頁
2022-2023學(xué)年貴州省畢節(jié)織金縣市級(jí)名校中考聯(lián)考數(shù)學(xué)試題含解析_第2頁
2022-2023學(xué)年貴州省畢節(jié)織金縣市級(jí)名校中考聯(lián)考數(shù)學(xué)試題含解析_第3頁
2022-2023學(xué)年貴州省畢節(jié)織金縣市級(jí)名校中考聯(lián)考數(shù)學(xué)試題含解析_第4頁
2022-2023學(xué)年貴州省畢節(jié)織金縣市級(jí)名校中考聯(lián)考數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年中考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.下列運(yùn)算正確的是()A.4x+5y=9xy B.(?m)3?m7=m10C.(x3y)5=x8y5 D.a(chǎn)12÷a8=a42.如圖,在△ABC中,∠ACB=90°,沿CD折疊△CBD,使點(diǎn)B恰好落在AC邊上的點(diǎn)E處.若∠A=24°,則∠BDC的度數(shù)為()A.42° B.66° C.69° D.77°3.商場(chǎng)將某種商品按原價(jià)的8折出售,仍可獲利20元.已知這種商品的進(jìn)價(jià)為140元,那么這種商品的原價(jià)是()A.160元B.180元C.200元D.220元4.不等式5+2x<1的解集在數(shù)軸上表示正確的是().A. B. C. D.5.下列圖形中,是軸對(duì)稱圖形但不是中心對(duì)稱圖形的是()A.直角梯形B.平行四邊形C.矩形D.正五邊形6.的算術(shù)平方根是()A.4 B.±4 C.2 D.±27.鄭州地鐵Ⅰ號(hào)線火車站站口分布如圖所示,有A,B,C,D,E五個(gè)進(jìn)出口,小明要從這里乘坐地鐵去新鄭機(jī)場(chǎng),回來后仍從這里出站,則他恰好選擇從同一個(gè)口進(jìn)出的概率是()A. B. C. D.8.如圖,點(diǎn)A、B、C都在⊙O上,若∠AOC=140°,則∠B的度數(shù)是()A.70° B.80° C.110° D.140°9.如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),OP=5cm,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),△PMN周長(zhǎng)的最小值是5cm,則∠AOB的度數(shù)是().A. B. C. D.10.已知一元二次方程的兩個(gè)實(shí)數(shù)根分別是x1、x2則x12x2x1x22的值為()A.-6 B.-3 C.3 D.6二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.已知一組數(shù)據(jù)1,2,x,2,3,3,5,7的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是.12.已知關(guān)于x的一元二次方程kx2+3x﹣4k+6=0有兩個(gè)相等的實(shí)數(shù)根,則該實(shí)數(shù)根是_____.13.小明把一副含45°,30°的直角三角板如圖擺放,其中∠C=∠F=90°,∠A=45°,∠D=30°,則∠α+∠β等于_____.14.如圖,O是坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A的坐標(biāo)為(﹣3,﹣4),頂點(diǎn)C在x軸的負(fù)半軸上,函數(shù)y=(x<0)的圖象經(jīng)過菱形OABC中心E點(diǎn),則k的值為_____.15.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且﹣1<x1<0,對(duì)稱軸x=1.如圖所示,有下列5個(gè)結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實(shí)數(shù)).其中所有結(jié)論正確的是______(填寫番號(hào)).16.分解因式:mx2﹣6mx+9m=_____.三、解答題(共8題,共72分)17.(8分)如圖,為了測(cè)量建筑物AB的高度,在D處樹立標(biāo)桿CD,標(biāo)桿的高是2m,在DB上選取觀測(cè)點(diǎn)E、F,從E測(cè)得標(biāo)桿和建筑物的頂部C、A的仰角分別為58°、45°.從F測(cè)得C、A的仰角分別為22°、70°.求建筑物AB的高度(精確到0.1m).(參考數(shù)據(jù):tan22°≈0.40,tan58°≈1.60,tan70°≈2.1.)18.(8分)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點(diǎn),且頂點(diǎn)在BC邊上,對(duì)稱軸交AC于點(diǎn)D,動(dòng)點(diǎn)P在拋物線對(duì)稱軸上,動(dòng)點(diǎn)Q在拋物線上.(1)求拋物線的解析式;(2)當(dāng)PO+PC的值最小時(shí),求點(diǎn)P的坐標(biāo);(3)是否存在以A,C,P,Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出P,Q的坐標(biāo);若不存在,請(qǐng)說明理由.19.(8分)八年級(jí)(1)班研究性學(xué)習(xí)小組為研究全校同學(xué)課外閱讀情況,在全校隨機(jī)邀請(qǐng)了部分同學(xué)參與問卷調(diào)查,統(tǒng)計(jì)同學(xué)們一個(gè)月閱讀課外書的數(shù)量,并繪制了以下統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息解決下列問題:(1)共有名同學(xué)參與問卷調(diào)查;(2)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;(3)全校共有學(xué)生1500人,請(qǐng)估計(jì)該校學(xué)生一個(gè)月閱讀2本課外書的人數(shù)約為多少.20.(8分)(2016山東省煙臺(tái)市)某中學(xué)廣場(chǎng)上有旗桿如圖1所示,在學(xué)習(xí)解直角三角形以后,數(shù)學(xué)興趣小組測(cè)量了旗桿的高度.如圖2,某一時(shí)刻,旗桿AB的影子一部分落在平臺(tái)上,另一部分落在斜坡上,測(cè)得落在平臺(tái)上的影長(zhǎng)BC為4米,落在斜坡上的影長(zhǎng)CD為3米,AB⊥BC,同一時(shí)刻,光線與水平面的夾角為72°,1米的豎立標(biāo)桿PQ在斜坡上的影長(zhǎng)QR為2米,求旗桿的高度(結(jié)果精確到0.1米).(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)21.(8分)為了響應(yīng)“足球進(jìn)校園”的目標(biāo),某校計(jì)劃為學(xué)校足球隊(duì)購買一批足球,已知購買2個(gè)A品牌的足球和3個(gè)B品牌的足球共需380元;購買4個(gè)A品牌的足球和2個(gè)B品牌的足球共需360元.求A,B兩種品牌的足球的單價(jià).求該校購買20個(gè)A品牌的足球和2個(gè)B品牌的足球的總費(fèi)用.22.(10分)某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊周長(zhǎng)為30米的籬笆圍成.已知墻長(zhǎng)為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊長(zhǎng)為米.若苗圃園的面積為72平方米,求;若平行于墻的一邊長(zhǎng)不小于8米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請(qǐng)說明理由;23.(12分)某商場(chǎng)計(jì)劃購進(jìn)一批甲、乙兩種玩具,已知一件甲種玩具的進(jìn)價(jià)與一件乙種玩具的進(jìn)價(jià)的和為40元,用90元購進(jìn)甲種玩具的件數(shù)與用150元購進(jìn)乙種玩具的件數(shù)相同.求每件甲種、乙種玩具的進(jìn)價(jià)分別是多少元?商場(chǎng)計(jì)劃購進(jìn)甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場(chǎng)決定此次進(jìn)貨的總資金不超過1000元,求商場(chǎng)共有幾種進(jìn)貨方案?24.計(jì)算:2cos30°+--()-2

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

各式計(jì)算得到結(jié)果,即可作出判斷.【詳解】解:A、4x+5y=4x+5y,錯(cuò)誤;B、(-m)3?m7=-m10,錯(cuò)誤;C、(x3y)5=x15y5,錯(cuò)誤;D、a12÷a8=a4,正確;故選D.【點(diǎn)睛】此題考查了整式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.2、C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折疊的性質(zhì)可得:∠BCD=∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故選C.3、C【解析】

利用打折是在標(biāo)價(jià)的基礎(chǔ)之上,利潤(rùn)是在進(jìn)價(jià)的基礎(chǔ)上,進(jìn)而得出等式求出即可.【詳解】解:設(shè)原價(jià)為x元,根據(jù)題意可得:80%x=140+20,解得:x=1.所以該商品的原價(jià)為1元;故選:C.【點(diǎn)睛】此題主要考查了一元一次方程的應(yīng)用,根據(jù)題意列出方程是解決問題的關(guān)鍵.4、C【解析】

先解不等式得到x<-1,根據(jù)數(shù)軸表示數(shù)的方法得到解集在-1的左邊.【詳解】5+1x<1,移項(xiàng)得1x<-4,系數(shù)化為1得x<-1.故選C.【點(diǎn)睛】本題考查了在數(shù)軸上表示不等式的解集:先求出不等式組的解集,然后根據(jù)數(shù)軸表示數(shù)的方法把對(duì)應(yīng)的未知數(shù)的取值范圍通過畫區(qū)間的方法表示出來,等號(hào)時(shí)用實(shí)心,不等時(shí)用空心.5、D【解析】分析:根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念結(jié)合矩形、平行四邊形、直角梯形、正五邊形的性質(zhì)求解.詳解:A.直角梯形不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;B.平行四邊形不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;C.矩形是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;D.正五邊形是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)正確.故選D.點(diǎn)睛:本題考查了軸對(duì)稱圖形和中心對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形沿對(duì)稱軸折疊后可重合;中心對(duì)稱圖形是要尋找對(duì)稱中心,圖形旋轉(zhuǎn)180°后與原圖形重合.6、C【解析】

先求出的值,然后再利用算術(shù)平方根定義計(jì)算即可得到結(jié)果.【詳解】=4,4的算術(shù)平方根是2,所以的算術(shù)平方根是2,故選C.【點(diǎn)睛】本題考查了算術(shù)平方根,熟練掌握算術(shù)平方根的定義是解本題的關(guān)鍵.7、C【解析】

列表得出進(jìn)出的所有情況,再從中確定出恰好選擇從同一個(gè)口進(jìn)出的結(jié)果數(shù),繼而根據(jù)概率公式計(jì)算可得.【詳解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE∴一共有25種等可能的情況,恰好選擇從同一個(gè)口進(jìn)出的有5種情況,∴恰好選擇從同一個(gè)口進(jìn)出的概率為=,故選C.【點(diǎn)睛】此題主要考查了列表法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時(shí)還要注意是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.8、C【解析】分析:作對(duì)的圓周角∠APC,如圖,利用圓內(nèi)接四邊形的性質(zhì)得到∠P=40°,然后根據(jù)圓周角定理求∠AOC的度數(shù).詳解:作對(duì)的圓周角∠APC,如圖,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故選:C.點(diǎn)睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.9、B【解析】試題分析:作點(diǎn)P關(guān)于OA對(duì)稱的點(diǎn)P3,作點(diǎn)P關(guān)于OB對(duì)稱的點(diǎn)P3,連接P3P3,與OA交于點(diǎn)M,與OB交于點(diǎn)N,此時(shí)△PMN的周長(zhǎng)最?。删€段垂直平分線性質(zhì)可得出△PMN的周長(zhǎng)就是P3P3的長(zhǎng),∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等邊三角形,∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故選B.考點(diǎn):3.線段垂直平分線性質(zhì);3.軸對(duì)稱作圖.10、B【解析】

根據(jù)根與系數(shù)的關(guān)系得到x1+x2=1,x1?x2=﹣1,再把x12x2+x1x22變形為x1?x2(x1+x2),然后利用整體代入的方法計(jì)算即可.【詳解】根據(jù)題意得:x1+x2=1,x1?x2=﹣1,所以原式=x1?x2(x1+x2)=﹣1×1=-1.故選B.【點(diǎn)睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程兩個(gè)為x1,x2,則x1+x2,x1?x2.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、2.1【解析】試題分析:∵數(shù)據(jù)1,2,x,2,3,3,1,7的眾數(shù)是2,∴x=2,∴這組數(shù)據(jù)的中位數(shù)是(2+3)÷2=2.1;故答案為2.1.考點(diǎn):1、眾數(shù);2、中位數(shù)12、﹣1【解析】

根據(jù)二次項(xiàng)系數(shù)非零結(jié)合根的判別式△=0,即可得出關(guān)于k的一元一次不等式及一元二次方程,解之即可得出k值,將其代入原方程中解之即可得出原方程的解.【詳解】解:∵關(guān)于x的一元二次方程kx1+3x-4k+6=0有兩個(gè)相等的實(shí)數(shù)根,∴,解得:k=,∴原方程為x1+4x+4=0,即(x+1)1=0,解得:x=-1.故答案為:-1.【點(diǎn)睛】本題考查根的判別式、一元二次方程的定義以及配方法解一元二次方程,牢記“當(dāng)△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根”是解題的關(guān)鍵.13、210°【解析】

根據(jù)三角形內(nèi)角和定理得到∠B=45°,∠E=60°,根據(jù)三角形的外角的性質(zhì)計(jì)算即可.【詳解】解:如圖:∵∠C=∠F=90°,∠A=45°,∠D=30°,∴∠B=45°,∠E=60°,∴∠2+∠3=120°,∴∠α+∠β=∠A+∠1+∠4+∠B=∠A+∠B+∠2+∠3=90°+120°=210°,故答案為:210°.【點(diǎn)睛】本題考查的是三角形的外角的性質(zhì)、三角形內(nèi)角和定理,掌握三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和是解題的關(guān)鍵.14、8【解析】

根據(jù)反比例函數(shù)的性質(zhì)結(jié)合點(diǎn)的坐標(biāo)利用勾股定理解答.【詳解】解:菱形OABC的頂點(diǎn)A的坐標(biāo)為(-3,-4),OA=OC=則點(diǎn)B的橫坐標(biāo)為-5-3=-8,點(diǎn)B的坐標(biāo)為(-8,-4),點(diǎn)C的坐標(biāo)為(-5,0)則點(diǎn)E的坐標(biāo)為(-4,-2),將點(diǎn)E的坐標(biāo)帶入y=(x<0)中,得k=8.給答案為:8.【點(diǎn)睛】此題重點(diǎn)考察學(xué)生對(duì)反比例函數(shù)性質(zhì)的理解,掌握坐標(biāo)軸點(diǎn)的求法和菱形性質(zhì)是解題的關(guān)鍵.15、③④⑤【解析】

根據(jù)函數(shù)圖象和二次函數(shù)的性質(zhì)可以判斷題目中各個(gè)小題的結(jié)論是否成立,從而可以解答本題.【詳解】解:由圖象可得,拋物線開口向下,則a<0,拋物線與y軸交于正半軸,則c>0,對(duì)稱軸在y軸右側(cè),則與a的符號(hào)相反,故b>0.

∴a<0,b>0,c>0,

∴abc<0,故①錯(cuò)誤,

當(dāng)x=-1時(shí),y=a-b+c<0,得b>a+c,故②錯(cuò)誤,

∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且-1<x1<0,對(duì)稱軸x=1,

∴x=2時(shí)的函數(shù)值與x=0的函數(shù)值相等,

∴x=2時(shí),y=4a+2b+c>0,故③正確,

∵x=-1時(shí),y=a-b+c<0,-=1,

∴2a-2b+2c<0,b=-2a,

∴-b-2b+2c<0,

∴2c<3b,故④正確,

由圖象可知,x=1時(shí),y取得最大值,此時(shí)y=a+b+c,

∴a+b+c>am2+bm+c(m≠1),

∴a+b>am2+bm

∴a+b>m(am+b),故⑤正確,

故答案為:③④⑤.【點(diǎn)睛】本題考查二次函數(shù)圖象與系數(shù)的關(guān)系、拋物線與x軸的交點(diǎn)坐標(biāo),解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.16、m(x﹣3)1.【解析】

先把m提出來,然后對(duì)括號(hào)里面的多項(xiàng)式用公式法分解即可?!驹斀狻縨=m(=m【點(diǎn)睛】解題的關(guān)鍵是熟練掌握因式分解的方法。三、解答題(共8題,共72分)17、建筑物AB的高度約為5.9米【解析】

在△CED中,得出DE,在△CFD中,得出DF,進(jìn)而得出EF,列出方程即可得出建筑物AB的高度;【詳解】在Rt△CED中,∠CED=58°,∵tan58°=,∴DE=,在Rt△CFD中,∠CFD=22°,∵tan22°=,∴DF=,∴EF=DF﹣DE=-,同理:EF=BE﹣BF=,∴=-,解得:AB≈5.9(米),答:建筑物AB的高度約為5.9米.【點(diǎn)睛】考查解直角三角形的應(yīng)用,解題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答問題.18、(1)y=x2+3x;(2)當(dāng)PO+PC的值最小時(shí),點(diǎn)P的坐標(biāo)為(2,);(3)存在,具體見解析.【解析】

(1)由條件可求得拋物線的頂點(diǎn)坐標(biāo)及A點(diǎn)坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)D與P重合時(shí)有最小值,求出點(diǎn)D的坐標(biāo)即可;(3)存在,分別根據(jù)①AC為對(duì)角線,②AC為邊,兩種情況,分別求解即可.【詳解】(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵拋物線經(jīng)過O、A兩點(diǎn),且頂點(diǎn)在BC邊上,∴拋物線頂點(diǎn)坐標(biāo)為(2,3),∴可設(shè)拋物線解析式為y=a(x﹣2)2+3,把A點(diǎn)坐標(biāo)代入可得0=a(4﹣2)2+3,解得a=,∴拋物線解析式為y=(x﹣2)2+3,即y=x2+3x;(2)∵點(diǎn)P在拋物線對(duì)稱軸上,∴PA=PO,∴PO+PC=PA+PC.∴當(dāng)點(diǎn)P與點(diǎn)D重合時(shí),PA+PC=AC;當(dāng)點(diǎn)P不與點(diǎn)D重合時(shí),PA+PC>AC;∴當(dāng)點(diǎn)P與點(diǎn)D重合時(shí),PO+PC的值最小,設(shè)直線AC的解析式為y=kx+b,根據(jù)題意,得解得∴直線AC的解析式為,當(dāng)x=2時(shí),,∴當(dāng)PO+PC的值最小時(shí),點(diǎn)P的坐標(biāo)為(2,);(3)存在.①AC為對(duì)角線,當(dāng)四邊形AQCP為平行四邊形,點(diǎn)Q為拋物線的頂點(diǎn),即Q(2,3),則P(2,0);②AC為邊,當(dāng)四邊形AQPC為平行四邊形,點(diǎn)C向右平移2個(gè)單位得到P,則點(diǎn)A向右平移2個(gè)單位得到點(diǎn)Q,則Q點(diǎn)的橫坐標(biāo)為6,當(dāng)x=6時(shí),,此時(shí)Q(6,?9),則點(diǎn)A(4,0)向右平移2個(gè)單位,向下平移9個(gè)單位得到點(diǎn)Q,所以點(diǎn)C(0,3)向右平移2個(gè)單位,向下平移9個(gè)單位得到點(diǎn)P,則P(2,?6);當(dāng)四邊形APQC為平行四邊形,點(diǎn)A向左平移2個(gè)單位得到P,則點(diǎn)C向左平移2個(gè)單位得到點(diǎn)Q,則Q點(diǎn)的橫坐標(biāo)為?2,當(dāng)x=?2時(shí),,此時(shí)Q(?2,?9),則點(diǎn)C(0,3)向左平移2個(gè)單位,向下平移12個(gè)單位得到點(diǎn)Q,所以點(diǎn)A(4,0)向左平移2個(gè)單位,向下平移12個(gè)單位得到點(diǎn)P,則P(2,?12);綜上所述,P(2,0),Q(2,3)或P(2,?6),Q(6,?9)或P(2,?12),Q(?2,?9).【點(diǎn)睛】二次函數(shù)的綜合應(yīng)用,涉及矩形的性質(zhì)、待定系數(shù)法、平行四邊形的性質(zhì)、方程思想及分類討論思想等知識(shí).19、(1)100;(2)補(bǔ)圖見解析;(3)570人.【解析】

(1)由讀書1本的人數(shù)及其所占百分比可得總?cè)藬?shù);(2)總?cè)藬?shù)乘以讀4本的百分比求得其人數(shù),減去男生人數(shù)即可得出女生人數(shù),用讀2本的人數(shù)除以總?cè)藬?shù)可得對(duì)應(yīng)百分比;(3)總?cè)藬?shù)乘以樣本中讀2本人數(shù)所占比例.【詳解】(1)參與問卷調(diào)查的學(xué)生人數(shù)為(8+2)÷10%=100人,故答案為:100;(2)讀4本的女生人數(shù)為100×15%﹣10=5人,讀2本人數(shù)所占百分比為20+補(bǔ)全圖形如下:(3)估計(jì)該校學(xué)生一個(gè)月閱讀2本課外書的人數(shù)約為1500×38%=570人.【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。?0、13.1.【解析】試題分析:如圖,作CM∥AB交AD于M,MN⊥AB于N,根據(jù)=,可求得CM的長(zhǎng),在RT△AMN中利用三角函數(shù)求得AN的長(zhǎng),再由MN∥BC,AB∥CM,判定四邊形MNBC是平行四邊形,即可得BN的長(zhǎng),最后根據(jù)AB=AN+BN即可求得AB的長(zhǎng).試題解析:如圖作CM∥AB交AD于M,MN⊥AB于N.由題意=,即=,CM=,在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∴AN≈12.3,∵M(jìn)N∥BC,AB∥CM,∴四邊形MNBC是平行四邊形,∴BN=CM=,∴AB=AN+BN=13.1米.考點(diǎn):解直角三角形的應(yīng)用.21、(1)一個(gè)A品牌的足球需90元,則一個(gè)B品牌的足球需100元;(2)1.【解析】

(1)設(shè)一個(gè)A品牌的足球需x元,則一個(gè)B品牌的足球需y元,根據(jù)“購買2個(gè)A品牌的足球和3個(gè)B品牌的足球共需380元;購買4個(gè)A品牌的足球和2個(gè)B品牌的足球共需360元”列出方程組并解答;(2)把(1)中的數(shù)據(jù)代入求值即可.【詳解】(1)設(shè)一個(gè)A品牌的足球需x元,則一個(gè)B品牌的足球需y元,依題意得:,解得:.答:一個(gè)A品牌的足球需40元,則一個(gè)B品牌的足球需100元;(2)依題意得:20×40+2×100=1(元).答:該校購買20個(gè)A品牌的足球和2個(gè)B品牌的足球的總費(fèi)用是1元.考點(diǎn):二元一次方程組的應(yīng)用.22、(1)2(2)當(dāng)x=4時(shí),y最小=8

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論