



下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
洞觀2022年考研數(shù)學(xué)真題穩(wěn)中求變對于剛剛結(jié)束2022年碩士討論生入學(xué)考試的同學(xué)來說,終于是可以松一口氣了,可能對于數(shù)學(xué)一同學(xué)來講有一部分學(xué)員今年應(yīng)當(dāng)考的比較郁悶。尤其是那些平常自己琢磨真題討論真題的同學(xué)來講,今年感覺沒有太大收獲,由于今年數(shù)一的真題可說是變化較大,但變化歸變化都是些基本的變化,可見今年的命題組老師也是費勁周折給同學(xué)們出了一張有特色的試卷。
下面就數(shù)學(xué)一的各個題目給剛剛覺得郁悶的考生們分析一下,看看自己在復(fù)習(xí)過程中哪些是自己沒有關(guān)注的或者是需要在以后改進的。
(1)、中等基本題,但形式比以往新奇,參考書上一般較少消失以多項式為基礎(chǔ)構(gòu)造的e重要極限,這個的話我是分子湊出分母相同的部分,然后寫成1+XX,然后求一個e的多少多少次極限。
(2)、基本題,算偏導(dǎo),直接對F微分即可,然后解出z對xy的偏導(dǎo)數(shù),代入得答案。
(3)、難題,究竟沒多少人重點看反常積分?jǐn)可⑿?,留意這里分母是x的1/n次方,但分子的話也是作為一個次方,應(yīng)當(dāng)都會起到像p級數(shù)那樣的作用,所以選了C。
(4)、新奇題,要用二重積分的定義湊極限,留意ij都是從1加到n,所以上下限都是0到1,選D。
(5)、基本題,兩個矩陣相乘為單位陣,說明其秩都大于等于m,再結(jié)合n與m的大小比較爭論,可知都為m。
(6)、中等基本題,由A*A+A=0知有特征值0、-1,關(guān)鍵接下來推斷各自是幾重,留意說了A的秩是3,就可以推出A+E的秩小于等于1了,所以-1特征值對應(yīng)的特征向量至少有3個線性無關(guān)解,所以-1是3重。
(7)、簡潔題,直接算F的左右極限,相減即可。
(8)、簡潔題,直接按概率密度積分等于1確定。
(9)、基本題,求參數(shù)方程的二階導(dǎo)數(shù),直接算就是。
(10)、基本題,明顯要換元積分,然后分部積分,也不難。
(11)、中等基本題,這題有肯定的技巧性,方法得到可節(jié)省時間,可以看到曲線積分被積函數(shù)可以湊成1/2*(ydx^2+x^2dy)+1/2(x^2dy),前一個是全微分,故結(jié)果只與起點終點有關(guān),為0,后一個由于對稱性也為0,快速得答案為0。
(12)、基本題,求型心坐標(biāo),涉及兩個三重積分,但計算都不簡單,用柱坐標(biāo)即可。
(13)、簡潔題,由條件知向量組秩為2,初等行變換確定參數(shù)。
(14)、難題,這題出得有點意思,必需用數(shù)學(xué)期望的定義,然后還要求一個級數(shù)的和,最終答案是2Ce,當(dāng)然有人提到其實C也可以確定,不知道改卷時會怎么判,假如肯定要解出C的話,這題將會成為亮點。
(15)、中等基本題,求非齊次方程的解。首先求齊次通解沒有問題,但設(shè)特解時要留意,有一重根,所以設(shè)的應(yīng)當(dāng)是x(Ax+B)e^x,剩下就是計算要認(rèn)真了。
(16)、中等基本題,求單調(diào)區(qū)間,那當(dāng)然是找駐點,求出一階導(dǎo)以后,推斷使其為零的點仍不明朗,所以這里一個小技巧是,要留意到基本里的e^(-t*t)恒為正,所以必需是上下限相同時積分部分才為0,另外一個可以很簡單看出是0,這樣找到三個駐點1-10以后就好辦了。
(17)、新奇題,夾逼原理好多年沒考了,今年消失一個,這種題目確定兩問是有聯(lián)系的,第一問用不等式可以得到比較,其次問就是用夾逼原理了,該題有肯定難度,不簡單想到。
(18)、中等基本題,求和函數(shù),這個都知道是必考的了吧,求和綻開,考前必需熟識的典型內(nèi)容,但計算簡單出錯,所以是基本而中等,不能算簡潔。
(19)、中等基本題,把曲面積分和切平面揉和起來出的題,個人感覺角度也算不錯,先要幾何應(yīng)用,總體來說計算任務(wù)不重。
(20)、基本題,爭論參數(shù)對方程組解的影響,這類題以往的真題和輔導(dǎo)書上處處可見。
(21)、基本題,題目類型不新,但稍有變化,破解點還是要留意到Q矩陣的正交性,這樣就能把另外兩個特征向量定出了,然后立馬求得A,其次問證明正定,方法許多,可以從定義,也可以證明特征值都大于零,而且還是比較簡單看得出來的。
(22)、基本題,給了二維概率密度,求條件概率密度,也就是要先去求一個邊緣概率密度,把握好對誰積分,求出來是誰的函數(shù)就沒問題了。
(23)、難題新奇題,不同于以往的老套路,這次沒讓求估量,而是先用無偏估量的條件求參數(shù),這涉及到要對N1N2N3求期望,可能很多人到這里搞不清這三個量究竟是啥,不要慌好好看看條件,N1N2N3實際上也就是隨機變量,所以只要想方法求出它們各自取k時對應(yīng)的概率就ok了,這相當(dāng)于知道分布律,然后再按定義求期望。下一步分析如何求分布律,觀看以后發(fā)覺其實更簡潔,N1遵循二項分布(由于都是取1或不取1兩種可能),直接就可以得到其期望了,第一問搞定!其次問的話是要求方差,那么這里三個N確定不獨立了,所以不能任憑把括號打開,要想方法求它們之間的協(xié)方差,這是一種考慮,另外就是間接求法,按D=E(X*X)-E(X)*E(X)來算,要
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司包車送員工合同范例
- 醫(yī)院擔(dān)架服務(wù)合同范本
- 互聯(lián)網(wǎng)商標(biāo)設(shè)計合同范本
- 個人建房外包合同范本
- 勞動合同范本 學(xué)校
- 低租金租房合同范本
- 勞動合同范本 合肥
- 農(nóng)村建筑標(biāo)準(zhǔn)合同范例
- 供電設(shè)施租用合同范本
- 加工牛肉出售合同范本
- 危貨押運員考試答案(題庫版)
- 施工影像資料交底
- QCT267-2023汽車切削加工零件未注公差尺寸的極限偏差
- 2022-2023學(xué)年浙江省紹興市高一(下)期末數(shù)學(xué)試卷含答案
- 租房協(xié)議書 租房協(xié)議書范本
- GB/T 43646-2024陸生野生動物廊道設(shè)計要求
- 吊籃施工風(fēng)險分級管控與隱患排查治理(匯編)
- 內(nèi)蒙古呼和浩特市2023年中考?xì)v史試題(附真題答案)
- 急診科護理帶教經(jīng)驗
- 車間維修工培訓(xùn)課件
- 涉警輿情培訓(xùn)課件模板
評論
0/150
提交評論