數(shù)學(xué)數(shù)列大題50答案_第1頁
數(shù)學(xué)數(shù)列大題50答案_第2頁
數(shù)學(xué)數(shù)列大題50答案_第3頁
數(shù)學(xué)數(shù)列大題50答案_第4頁
數(shù)學(xué)數(shù)列大題50答案_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

502Sn(n

n(1)

,兩式相減,得ann1an1(n2∴an

anan1 a2

n

∴ann1n(1n(n(2)Tn

2311 n=1111 n =1

1n

nn2.解(1)∵(an,2an1x-y+1=0∴anan110,即an1an 故{an}是首項(xiàng)為1,公差為1的等差數(shù)列∴an1(n1)1

2n

2n

n

2n

12n

0nN*且n∴f(n)f(n1)f(2)7

f(n7 8ab8

解得a

f(x)

4x(也可以寫成4x

等不同的形式

=

f(n)=

4n=2n-因?yàn)閍n+1-an=2(n+1)-5-(2n-5)= 所以{an}是首項(xiàng)為-3,公差為24

n(32n5)n24n(n2)22

n=2Sn取最小值.y=f(x)=kx+bk≠0)f(2)=2k+b,f(5)=5k+b,f(4)=4k+b,∵k≠0,∴b=-17 4 將①代入②得k=4,b=-17.

(2)b

bb

1

bn

1n

1

n

n n1 1 (3)Sn 1 1 3 4

n

n

n bn1

)+…+(n=1時(shí),上式也成立∵12<a≤15,79a4,n=4時(shí),an取最小值,最小值為a4=18- .解(1)已知a2a22a…2n1a8n(n n2a2a22

…2n2

8(n1)(n

①-2n1a8,求得a24n 在①中令n1,可得得

8241所以an24n(n由題意b18b24b32,所以b2b14b3b22∴數(shù)列{bn1bn的公差為242∴bn1bn4(n1)22n6 (4)(2) (2n8)n27n14(n(2)bak27k1424k k4f(kk7)2724kf(4)1 所以k4f(kk27k1424k1

f(2)

f(3)0所以,不存在kN*,使得bkak(0,1(I)(II)anb

2a2a1a3 2(23)1(5)1(95 得2 n

因此,存在

2

ann

}成為首項(xiàng)是2

1.(1)令n1,1a2a112,即a2a1nan1Snnnn由n1n

nan1n1anan∵

2,∴

是以2為首項(xiàng)、2nann(2)①

n

n

T3n2時(shí),T

3,∵對(duì)一切正整數(shù)n,總有Tm恒成立,因此m 10.f(x)a(n2)2b(a(1)f(4)0,∴4ab 又f(1)3.∴ab 由①、②得a1b4f(n)n2an

f(n)f(n1)n24n(n1)24(n1)2n5(na1f(13an2n2n (2)bn2n312nn2bn是增函數(shù),因此b20為{bn}的最小項(xiàng),且bn又b12,所以{bn}中最大項(xiàng)為b12,最小項(xiàng)為b201(1)

1

,∴f1(x)2y1

2x

(x1)2又 ,∴a =

2ana1=

2an

,∴an0 ∴

2(nNaa aa

∴{1}是以-2007為首項(xiàng)2∴120072(n1an2n20091 (2n2009)(2nbn>0bn3

n=1005時(shí)1的最大值為31綜上:bn3 12(1)

anan1

an nannn(2)S(n12n1n13(I)

4Sn

12n又因?yàn)閍n正數(shù)數(shù)列,所以anan12,由

a11,得a11an2nb

1

)nanan

2n12n

22n 2n 所以B …… )=1

2n 2n

14.解()2an+1-an+an+1an=0 ∵an≠0,兩邊同除11 ∴數(shù)列{

2

1=1(n1)dn

1nn

,(nN1

n

(n≤6,bn (n>6,n(

6n)n(11

(n≤6,15(1)

(n (n

)n22

(n>6,(1)當(dāng)n2anSnSn1SnSn1SnSn1∴1

1n2,∴數(shù)列1Sn

SnS(2)由(1)知,Sn2∴Sn112n2

1(n1)(1)112n 2當(dāng)n2時(shí),anSnSn111 ,2,∴an

(n ,(n(1)∵bn1

6,即

于是數(shù)列{bn}是等差數(shù)列,故bnb16(n1(bn)

na1b1(nn=1時(shí),上式也成立所以ana1b1(n13(n1)(n(3)把a(bǔ)1ab1anaaa(n13(n1)(n23n29a)n6n12a15,72

96

4n=4an取最小值,最小值為a418(Ⅰ)當(dāng)n1aS1(a1)2,∴

1

14

(n2)

an

1

1)214

(anan1)(anan12)0∵an ∴anan10∴anan120anan12(n2故數(shù)列{an}是首項(xiàng)為1,公差為2的等差數(shù)列∴an2n1

bn

an

12

2n

2n∴Tnb1b21(11)1(11)1 2

22n

2n1(1 ) 2n 2n解:(Ⅰ)q=a5(Ⅱ)n=1c1nn≥2c1c2cn1an

c1c2cn1cn

②—①,

an

2,∴cn=2bn=2·3n1(n 2

,n )

1

20.(1)an 2(n2,且nnanan11,an an}))

1(n2

(n2

(3)

1213

122323 Sn

23

(n12

Sn n

n

(1)∵n≥2時(shí),an=Sn-Sn-1=2n2-2(n-1)2=4n-2.故數(shù)列{an}的通項(xiàng)an=4n-2,公差d=4. =

42即數(shù)列{bn}的通 bn=4n1

4

(2)∵

b

4n2(2n2 3∴Tn=1[(6n5)4n9x2x22.(1)f(x) 1,(xa

nSn

a1

∵P ,S

yf(

n

111,a Sn2an1,當(dāng)n2時(shí)Sn12an1SnSn1an2an

an2an1,an等比且公比為q2首項(xiàng)為1a

1 1 q' ,首項(xiàng)為1,所 的各項(xiàng)和 q'aa aan

n

1

12(1)

, 13即

1

3an

{

}是首項(xiàng)為

1d=3(2)由(1:)1n

anan S2n1得b

nnTb1b2n n2T124227nn(12)T13(2n13(2n2)(3n5(3n5)2

(3n5)2n(

q

aq2(nnn

a q2 q2 aq2n2, q2 aqn2 c a nc5,以q2n由(II)得

1q22n,

1q22n1a1a

q1111qa 131

11 q11

3a3a312qa312a312q 31q2n3 q2n 21q2 2q2n2(q21)

3

q

q2n

,q(1)

a2

(q1),

1

a2,a11,兩邊取對(duì)數(shù)得lg(1

2lg(1a,即lg(1an1)n n

(2)由(1)知lg(1a2n1lg(1a)2n1lg3lg32n11

T(1a)(1a)…(1+a)320321322…32n-

26.(1)解:設(shè)數(shù)列{an∵a1,a3,a9a2a

,即

2d)2a

8dd2∵d0,∴a1

1 ①∵Sa ∴5a54d

4d a3d ∴a3(n1)33 n2n

n2n (2)bn

3n5

3(n 5

n(n

n∴b

b

25[n(11)(11)(1

11aa//

(n1

1)n

259

9n22nn1

n

22n1(n n1得a1a2

a11a2②an24(nN*)ana1a3

a1為前項(xiàng),4為公比的等比數(shù)列,偶數(shù)項(xiàng)a2,a4,a6,是以a2的前項(xiàng),4為公比的等比數(shù)

a4k122k2k

4k122k (2)當(dāng)n S(a

m )(a

ma)1(142)8(142)3(2n

1 1 當(dāng)n為奇數(shù)時(shí),S a3(2n11)2n12n Sn

28(Ⅰ)

32

3n1

n,3na13n

32

3n2

n1(n2),33n13

nn11(n 1an3n(n11n=1an3n(nn(Ⅱ)bnnnS13232333nnn3S132233334nnn2S332333nnn2Sn

31

n

n1Sn3n113n13 29(1)

a2a6

又a0且aZa(2)①an1

2an,

1又b0a0,bnn②an(2)nbn(2)n(na0a2n1

即(2)2n12n1a)2)2n12n1a 而(2)2n104(2n1a0)2n1 a02n5nNa025 解(1)an2an12(an1anan2

2,故數(shù)列

aan1

由(1)知數(shù)列{an1an}以是a2-a1=3為首項(xiàng),以2為公比的等比數(shù)列,所以a a32 故a2-a1=3·20,所以a3-a2=3·21,a4-a3=3·22,…,a 32n 所以ana1

1

1).即an3

nna3n2n1n先求n2n1的前n項(xiàng)和n 設(shè)Tn222 2Tn222(n n2①—

2021222n1n2n2n1n

n2n2n1(n1)2nS3(n1)2n3n(n (Ⅰ)a=3, b=-2,所以f(x)=3x2-2x.又因?yàn)辄c(diǎn)(nSn)(nNyf(x的圖像上,所以Sn=3n2-2n.n≥2時(shí),an=Sn-Sn-1=(3n2-2n)-n1)22(n1)=6n-5.a(Ⅱ)由(Ⅰ)得知bnan

1 26n

)6nT

n 1(11)(1

1)...

)=1 = i=

2

6n

6n1

6n 因此,要使 (nN)成立的m,必須且僅須滿足 , 6n

1(Ⅰ)1

1n≥2anSnSn1即SnSn12Sn1 故{122為公差的等差數(shù)列 Sn(Ⅱ)由(Ⅰ)12n122nSSn Snn≥2

1

Sn12

2n(n(n2當(dāng)n=1時(shí),a1 an2

2n(n

(n(Ⅲ)S2S2...S21 ...

4

4

41(111...1)1(1 ... 1 2 (n1(11111... 1)11 5

n

2n

2(n1)

1(n2)∴數(shù)列a是以5為首項(xiàng),-1 2n3

2

n(n。2(2)由4B12A13nB3n12An

6n2。4bnBnBn1

6n24

6(n1)211(n4

12n4

(n2而當(dāng)n1B1b112n

1214

174bn n(3)對(duì)任意nNn

2n

12n52(6n1)3所以YXXYYc1XY中的最大數(shù),c117設(shè)等差數(shù)列cn的公差為d,則c10179d265179d125

d12595d12m(mN*),d24nc724n(nN*)n解:(Ⅰ)Pn(anbn在直線ly2x1上,bn2ann∵P1lyn

a10又?jǐn)?shù)列{an}nb2n1(nN*n

an1(nN*a2(b (n1)2a2(b (n1)2(2n

5(n1515n(n

n|P

|

(15n15

1n

(n151511515CC

(1111

1) (11

n

(Ⅲ)dn2dn1 dnn22(dn1n1{dnn22為公比,4 dn22n1,d2n1n (Ⅰ)

(nN ∵bn3log1an2,b13loga124∴

3log 3loga3logan1

q

1 1 1 ∴數(shù)列bn是首項(xiàng)b11d3其通項(xiàng)為bn3n2(nN

(3n2)(1)n,(nN4∴

114(1)27(1)3 (3n5)(1)n1(3n2)(1)n 于是1S1(1)24(1)37(1)4 (3n5)(1)n(3n2)(4

3S13(1)2(1)3 (1)n1(1)n(3n2)(4 4 131(1)2(1)3 (1)n1(1)n(3n2)( 4 1(3n2)(1)n1 ∴

212n8(1

(nN(Ⅲ)∵

(3n1)(1)n1(3n2)(

9(1n)(1)n1,(nN4∴當(dāng)n1cc n2cn1cn,即c1c2c3c∴當(dāng)n1c 又c1m2m1n1m2m1 m24m50得m1m36(∵

2S

anS

a

∴1

2(n≥

nN* nn

n

n

∴數(shù)列1

S Sn 當(dāng)n2aS

1

2(n 2n(nn=1a1不成立

(n1 1

(n≥b2(1n)a1,∴b21

11(n≥2)

n(n

n1∴左邊1111

n

1111顯然成立 37.(Ⅰ)當(dāng)a4f(xx|x4|2x(1)2x4f(xx(4x2x3(x3)2x2f(x)min5x3f(x)max(2)當(dāng)4x5f(xx(x42x3x1)2x4f(x)min5x5f(x)maxx24f(x)min5x5f(x)max a2

(a

x2(2a)x3,x

(x2)

3,x4 f(x)x2(2a)x3,xa (x

a2 (a) a2 (a f(xR上恒為增函數(shù)的充要條件是a2a,解得2a a

f(an)3|

4|2(nN*)a an①當(dāng)an4an1an6,即an1ann=1a1a26n≥2anan1

(1)—(2)得,n≥2an1an10

an1n又n

a3(nN*

此時(shí)a1②當(dāng)an4an1an

an1an

∴dd2時(shí),則an1an2(3,將(3)代入(1)得an4|an4|na4對(duì)一切nN*naa2(n1a4當(dāng)且僅當(dāng)na11 d2不符合題意,舍去綜合①②知,要使數(shù)列a(nN成等差數(shù)列,則a38(I)

2,

n可知對(duì)nN*an

an從而由

111即

1(

an

2

2,

112數(shù)列

1,公比為

111(1)n1(1)n1

211

2nan2n故數(shù)列an}{通 是an nan2n1.ai(ai1)(2i1)2(i當(dāng)i2時(shí)

ai(ai1)(2i

(2i1)(2i (2i1)(2i1 2i1

2i1nnii1 1? ?

1n

n3

°

f 2

2

f2

f(x)在(0,)上單調(diào)遞增,設(shè)0x1x21f(x2)0

f

)f(xx2)f(x)f(x2

xxf(x2)xx

f(x1)

f(x)在(0,)上是增函數(shù) f(Sn)

f(an)f(an1)1

f(Sn)f(2)

f(an)f(anf(2Sn)f[an(an2

a2

nnnn

1an

Sn(n (I)x=0f(0)fy)f(yf(y)fyx1,1f(xf(xf(x{xx1

2xn

2

1

n1 nnn0

1。f

)f(2xn)f[xnxn)f(xf(xnnn nnnn

1 1xn(xnf(x)在(1,1)上是奇函數(shù),∴f(x)f(x)f )2f(x),即f(xn1)2 n

f(xnf(xf(x)f1)12為公比的等比數(shù)列。f(x)2n1 1 1 1

1

n11 1(2) 1n1Tn

f(x)f(x)f(x)=12222n1

22n1 12m,使得對(duì)任意的nN*有

m432

2n

m4對(duì)nN*3m42m3m,使得對(duì)nN*,有

m43m10解(1)fn(xx(2)∵

(x)xn,∴f1(x)

(x)…

n(n(x)nx 2∴y

nxn(n1)(x

n2 n n2①當(dāng) 1即n2時(shí),函數(shù)y(x ) n2n x1ymin

122

n220又1)24(2289,n②當(dāng)21n2yminn

n22n

n22n480,解得n6n8(舍去)n6為所求的值(I)Dnx1x2ll與直線nn(II)∵Sn3123…n

2

∴當(dāng)TT,且

TT是數(shù)列T中的最大項(xiàng),故mT 43(Ⅰ)解:由an1ann12)2n(nN0 2

2可得n1

1,

2n

2所以n

列a的通 為a(n1)n (Ⅱ)解:設(shè)Tn23 (n (n1)

32435 (n2)n(n1) 當(dāng)1

2

得(1)Tn

(n

1

(n Tn

2

(n1)1

這時(shí)數(shù)列an的前nSn

當(dāng)1

n(n2

這時(shí)數(shù)列an的前n

n(n1)2n12(Ⅲ)證明:通過分析,推測(cè)數(shù)列an1a2a an1a2

2

,n≥

n ③ n 由0知a0,要使③式成立,只要2a (24)a(n≥2),因?yàn)?24)a(24)(n1)n(n ≥2nn12n22a,n≥

因此,存在k1an1ak1a2對(duì)任意nN (I)ana1n1)d4n1n當(dāng)n2時(shí),bS n22n(n1)22(n1)2n 所以ann3bn2n

2n1(nNf(n2n1n為正偶數(shù)

k為正奇數(shù)時(shí),k27f(k27)4f(k),得2(k2714(kk為正偶數(shù)時(shí),k27

2k43,k

.(舍2f(k27)4f(k),得(k2734(2kk將不等式變形并把a(bǔ)n1n4

即7k26,k

(舍712n12n

1)(1

112n12n

1)(1

112ng(n12n

1)(1

1g(n1)又

2n(2n(2n5)(2n

)

2n42n2n2n2n2n2n52n(2n5)(2n2

.2n g(n1)1,即g(n1)g(n)隨n的增大而增大,故

g(1)

(11)45.0a4515x2x15

2

(Ⅰ)

x2

,(nN*y1),得xy1xynxRy1,14y1yn0,即4y24(1ny4n10na,b是方程4y24(1ny4n10nabn Cn4n3,(n 2n2

(Ⅱ)Sn

n,dn

n

d11c,d22c,d33jxtvnbh為等差數(shù)列,2ddd,2c2c0,c1或c0(舍 經(jīng)檢驗(yàn)c1時(shí),jvt3rpl

(Ⅲ)f(n)

1372 1372(n36)(2n

n36 n當(dāng)且僅當(dāng)n36即n6時(shí)取nf(n)1

1a21a 11 8 2 11n2

1 21

,

8

2 ①-②得:a1(a2 2)1(a

a

1(a

)(a )

∵數(shù)列ananan14(n2a12an4n2;∵b1a1,bn1(an1an)bn∴b2,bn11,∴

2

1n11 (1 ⑵∵

an

(2n ∴Tn13454 (2n3) (2n1) 4Tn

4342 (2n5)4n2(2n3)4n1(2n1)4n兩式相減得

12(442 4n1)(2n1)4n5(2n5)4n5 5∴Tn95(1)Sn1anSn11an1(n

n1

(n2),數(shù)列{a1

} (2)f() ,b

11n1 1n

1

2(n1)n

n

1()1

an1bn1b

(1)n1n2nT12(1)3(1)2n

1

n() 1 11 ()2()3() 1 12

n()1①-②得:

()()()(

1n1 1 1 1 1 1 1

n( 1 1 1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論