版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022年湖南省常德市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.設(shè)區(qū)域,將二重積分在極坐標(biāo)系下化為二次積分為()A.A.
B.
C.
D.
2.A.exln2
B.e2xln2
C.ex+ln2
D.e2x+ln2
3.
4.設(shè)f'(x0)=1,則等于().A.A.3B.2C.1D.1/2
5.在穩(wěn)定性計(jì)算中,若用歐拉公式算得壓桿的臨界壓力為Fcr,而實(shí)際上壓桿屬于中柔度壓桿,則()。
A.并不影響壓桿的臨界壓力值
B.實(shí)際的臨界壓力大于Fcr,是偏于安全的
C.實(shí)際的臨界壓力小于Fcr,是偏于不安全的
D.實(shí)際的臨界壓力大于Fcr,是偏于不安全的
6.
7.
8.已知y=ksin2x的一個原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2
9.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無關(guān)條件
10.
11.
12.設(shè)f'(x)=1+x,則f(x)等于().A.A.1
B.X+X2+C
C.x++C
D.2x+x2+C
13.
14.設(shè)z=x2y,則等于()。A.2yx2y-1
B.x2ylnx
C.2x2y-1lnx
D.2x2ylnx
15.
16.
A.-1/2
B.0
C.1/2
D.1
17.
18.
19.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
20.
二、填空題(20題)21.
22.
23.
24.
25.
26.已知f(0)=1,f(1)=2,f(1)=3,則∫01xf"(x)dx=________。
27.
28.
29.
30.
31.
32.過點(diǎn)Mo(1,-1,0)且與平面x-y+3z=1平行的平面方程為_______.
33.若當(dāng)x→0時,2x2與為等價無窮小,則a=______.
34.
35.
36.
37.
38.
39.
40.
三、計(jì)算題(20題)41.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
42.證明:
43.
44.
45.
46.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則
47.求微分方程y"-4y'+4y=e-2x的通解.
48.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
49.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
50.
51.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
52.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
53.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
54.
55.求曲線在點(diǎn)(1,3)處的切線方程.
56.求微分方程的通解.
57.將f(x)=e-2X展開為x的冪級數(shù).
58.
59.
60.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
四、解答題(10題)61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.
是
收斂的()條件。
A.充分B.必要C.充分且必要D.無關(guān)
六、解答題(0題)72.
參考答案
1.A本題考查的知識點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分.
由于在極坐標(biāo)系下積分區(qū)域D可以表示為
0≤θ≤π,0≤r≤a.
因此
故知應(yīng)選A.
2.B本題考查了一階線性齊次方程的知識點(diǎn)。
因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當(dāng)x=0時,f(0)=ln2,所以C=In2,故f(x)=e2xln2.
注:方程y'=2y求解時也可用變量分離.
3.C解析:
4.B本題考查的知識點(diǎn)為導(dǎo)數(shù)的定義.
由題設(shè)知f'(x0)=1,又由題設(shè)條件知
可知應(yīng)選B.
5.B
6.C
7.C
8.D本題考查的知識點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
9.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定?!嗫蓪?dǎo)是可積的充分條件
10.D解析:
11.B
12.C本題考查的知識點(diǎn)為不定積分的性質(zhì).
可知應(yīng)選C.
13.D
14.A本題考查的知識點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。對于z=x2y,求的時候,要將z認(rèn)定為x的冪函數(shù),從而可知應(yīng)選A。
15.A
16.B
17.B
18.A
19.D由拉格朗日定理
20.D
21.
本題考查的知識點(diǎn)為初等函數(shù)的求導(dǎo)運(yùn)算.
本題需利用導(dǎo)數(shù)的四則運(yùn)算法則求解.
本題中常見的錯誤有
這是由于誤將sin2認(rèn)作sinx,事實(shí)上sin2為-個常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即
請考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.
22.y=0
23.
24.發(fā)散本題考查了級數(shù)的斂散性(比較判別法)的知識點(diǎn).
25.
26.2由題設(shè)有∫01xf"(x)dx=∫01xf"(x)=xf"(x)|01-|01f"(x)dx=f"(1)-f(x)|01=f"(1)-f(1)+f(0)=3-2+1=2。
27.
28.發(fā)散
29.
30.
本題考查的知識點(diǎn)為定積分運(yùn)算.
31.
32.由于已知平面的法線向量,所求平面與已知平面平行,可取所求平面法線向量,又平面過點(diǎn)Mo(1,-1,0),由平面的點(diǎn)法式方程可知,所求平面為
33.6;本題考查的知識點(diǎn)為無窮小階的比較.
當(dāng)于當(dāng)x→0時,2x2與為等價無窮小,因此
可知a=6.
34.1/z本題考查了二元函數(shù)的二階偏導(dǎo)數(shù)的知識點(diǎn)。
35.
36.eyey
解析:
37.
本題考查的知識點(diǎn)為冪級數(shù)的收斂半徑.
注意此處冪級數(shù)為缺項(xiàng)情形.
38.-2-2解析:
39.本題考查的知識點(diǎn)為無窮小的性質(zhì)。
40.e
41.
42.
43.
44.
45.
46.由等價無窮小量的定義可知
47.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
48.
49.
列表:
說明
50.
51.由二重積分物理意義知
52.
53.函數(shù)的定義域?yàn)?/p>
注意
54.由一階線性微分方程通解公式有
55.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
56.
57.
58.
則
59.
60.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
61.解
62.特征方程為
r2—2r-8=0.
特征根為r1=-2,r2=4.
63.本題考查的知識點(diǎn)為二重積分的計(jì)算(極坐標(biāo)系).
利用極坐標(biāo),區(qū)域D可以表示為
0≤0≤π,0≤r≤2,
如果積分區(qū)域?yàn)閳A域或圓的-部分,被積函數(shù)為f(x2+y2)的二重積分,通常利用極坐標(biāo)計(jì)算較方便.
使用極坐標(biāo)計(jì)算二重積分時,要先將區(qū)域D的邊界曲線化為極坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報參考:進(jìn)一步全面深化改革推進(jìn)中國式現(xiàn)代化的學(xué)理性研究
- 課題申報參考:建設(shè)用地減量化的空間優(yōu)化效應(yīng)、機(jī)制與政策優(yōu)化研究
- 2025年erp沙盤模擬學(xué)習(xí)心得(3篇)
- 2025版投資協(xié)議補(bǔ)充協(xié)議:產(chǎn)業(yè)鏈整合投資合作補(bǔ)充協(xié)議3篇
- 2025年度個性化定制汽車租賃合同書4篇
- 二零二五版漫畫連載網(wǎng)絡(luò)平臺版權(quán)合作協(xié)議4篇
- 2025年汕尾貨車從業(yè)資格證考什么
- 2025年食堂承包經(jīng)營食品安全風(fēng)險評估與防控合同3篇
- 二零二五年度城市公交車輛掛靠經(jīng)營許可合同4篇
- 二零二五年度廠房污水處理及排放合同匯編3篇
- 2025年溫州市城發(fā)集團(tuán)招聘筆試參考題庫含答案解析
- 2025年中小學(xué)春節(jié)安全教育主題班會課件
- 2025版高考物理復(fù)習(xí)知識清單
- 除數(shù)是兩位數(shù)的除法練習(xí)題(84道)
- 2025年度安全檢查計(jì)劃
- 2024年度工作總結(jié)與計(jì)劃標(biāo)準(zhǔn)版本(2篇)
- 全球半導(dǎo)體測試探針行業(yè)市場研究報告2024
- 反走私課件完整版本
- 2024年注冊計(jì)量師-一級注冊計(jì)量師考試近5年真題附答案
- 2023年四川省樂山市中考數(shù)學(xué)試卷
- 【可行性報告】2023年電動自行車行業(yè)項(xiàng)目可行性分析報告
評論
0/150
提交評論