2022-2023學(xué)年湖南省湘潭市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁(yè)
2022-2023學(xué)年湖南省湘潭市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁(yè)
2022-2023學(xué)年湖南省湘潭市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁(yè)
2022-2023學(xué)年湖南省湘潭市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁(yè)
2022-2023學(xué)年湖南省湘潭市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年湖南省湘潭市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。

A.vC=2uB

B.uC=θBα

C.vC=uB+θBα

D.vC=vB

2.

3.A.A.條件收斂B.絕對(duì)收斂C.收斂性與k有關(guān)D.發(fā)散

4.A.0或1B.0或-1C.0或2D.1或-1

5.

6.

7.

8.

9.

10.點(diǎn)(-1,-2,-5)關(guān)于yOz平面的對(duì)稱點(diǎn)是()

A.(-1,2,-5)B.(-1,2,5)C.(1,2,5)D.(1,-2,-5)11.設(shè)f'(x)為連續(xù)函數(shù),則等于()A.A.

B.

C.

D.

12.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx

13.

14.設(shè)y=3-x,則y'=()。A.-3-xln3

B.3-xlnx

C.-3-x-1

D.3-x-1

15.A.A.

B.

C.

D.

16.下列反常積分收斂的是()。A.∫1+∞xdx

B.∫1+∞x2dx

C.

D.

17.政策指導(dǎo)矩陣是根據(jù)()將經(jīng)營(yíng)單值進(jìn)行分類(lèi)的。

A.業(yè)務(wù)增長(zhǎng)率和相對(duì)競(jìng)爭(zhēng)地位

B.業(yè)務(wù)增長(zhǎng)率和行業(yè)市場(chǎng)前景

C.經(jīng)營(yíng)單位的競(jìng)爭(zhēng)能力與相對(duì)競(jìng)爭(zhēng)地位

D.經(jīng)營(yíng)單位的競(jìng)爭(zhēng)能力與市場(chǎng)前景吸引力

18.∫1+∞e-xdx=()

A.-eB.-e-1

C.e-1

D.e

19.

20.

二、填空題(20題)21.

22.

23.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則24.25.

26.

27.

28.

29.

30.

31.

32.

則b__________.

33.

34.

35.

36.

37.

38.

39.40.

三、計(jì)算題(20題)41.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).42.43.

44.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

45.

46.

47.求微分方程y"-4y'+4y=e-2x的通解.

48.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則49.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.50.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).51.52.求曲線在點(diǎn)(1,3)處的切線方程.53.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

54.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.55.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.56.求微分方程的通解.57.58.

59.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

60.證明:四、解答題(10題)61.設(shè)62.

63.

64.

65.求曲線y=x2、直線y=2-x與x軸所圍成的平面圖形的面積A及該圖形繞y軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積Vy。

66.

67.設(shè)f(x)為連續(xù)函數(shù),且

68.

69.70.五、高等數(shù)學(xué)(0題)71.

()。

A.0B.1C.2D.4六、解答題(0題)72.

參考答案

1.C

2.B解析:

3.A本題考杏的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂.

4.A

5.B解析:

6.C解析:

7.B

8.C

9.B

10.D關(guān)于yOz平面對(duì)稱的兩點(diǎn)的橫坐標(biāo)互為相反數(shù),故選D。

11.C本題考查的知識(shí)點(diǎn)為牛-萊公式和不定積分的性質(zhì).

可知應(yīng)選C.

12.B

13.C

14.Ay=3-x,則y'=3-x。ln3*(-x)'=-3-xln3。因此選A。

15.D

16.DA,∫1+∞xdx==∞發(fā)散;

17.D解析:政策指導(dǎo)矩陣根據(jù)對(duì)市場(chǎng)前景吸引力和經(jīng)營(yíng)單位的相對(duì)競(jìng)爭(zhēng)能力的劃分,可把企業(yè)的經(jīng)營(yíng)單位分成九大類(lèi)。

18.C

19.C

20.C解析:

21.[01)∪(1+∞)

22.2xy(x+y)+323.本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算。

如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長(zhǎng)、寬都為1的正形,可知其面積為1。因此

24.

25.

本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

注意此處冪級(jí)數(shù)為缺項(xiàng)情形.

26.

27.1/24

28.(-22)(-2,2)解析:

29.1/21/2解析:

30.331.本題考查的知識(shí)點(diǎn)為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問(wèn)題。

32.所以b=2。所以b=2。

33.

本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.

可分離變量方程求解的一般方法為:

(1)變量分離;

(2)兩端積分.

34.35.

36.x=-3

37.

38.3x2+4y

39.本題考查的知識(shí)點(diǎn)為定積分的換元法.

40.

41.

42.

43.由一階線性微分方程通解公式有

44.

45.

46.

47.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

48.由等價(jià)無(wú)窮小量的定義可知

49.

50.

列表:

說(shuō)明

51.52.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

53.

54.由二重積分物理意義知

55.函數(shù)的定義域?yàn)?/p>

注意

56.

57.

58.

59.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

60.

61.62.本題考查的知識(shí)點(diǎn)為將初等函數(shù)展開(kāi)為x的冪級(jí)數(shù).

如果題目中沒(méi)有限定展開(kāi)方法,一律要利用間接展開(kāi)法.這要求考生記住幾個(gè)標(biāo)準(zhǔn)展開(kāi)式:

63.

64.

65.

66.67.設(shè),則f(x)=x3+3Ax.將上式兩端在[0,1]上積分,得

因此

本題考查的知識(shí)點(diǎn)為兩個(gè):定積分表示一個(gè)確定的數(shù)值;計(jì)算定積分.

由于定積分存在,因此它表示一個(gè)確定的數(shù)值,設(shè),則

f(x)=x3+3Ax.

這是解題的關(guān)鍵!為了能求出A,可考慮將左端也轉(zhuǎn)化為A的表達(dá)式,為此將上式

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論