版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年山東省濱州市普通高校對口單招高等數(shù)學一自考預測試題(含答案)學校:________班級:________姓名:________考號:________
一、單選題(20題)1.微分方程y''-2y'=x的特解應設為
A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+c
2.
3.A.sin(2x-1)+C
B.
C.-sin(2x-1)+C
D.
4.
5.
6.下面哪個理論關注下屬的成熟度()
A.管理方格B.路徑—目標理論C.領導生命周期理論D.菲德勒權變理論
7.
8.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
9.下列命題正確的是().A.A.
B.
C.
D.
10.設函數(shù)為().A.A.0B.1C.2D.不存在
11.搖篩機如圖所示,已知O1B=O2B=0.4m,O1O2=AB,桿O1A按
規(guī)律擺動,(式中∮以rad計,t以s計)。則當t=0和t=2s時,關于篩面中點M的速度和加速度就散不正確的一項為()。
A.當t=0時,篩面中點M的速度大小為15.7cm/s
B.當t=0時,篩面中點M的法向加速度大小為6.17cm/s2
C.當t=2s時,篩面中點M的速度大小為0
D.當t=2s時,篩面中點M的切向加速度大小為12.3cm/s2
12.設y=3-x,則y'=()。A.-3-xln3
B.3-xlnx
C.-3-x-1
D.3-x-1
13.交換二次積分次序等于().A.A.
B.
C.
D.
14.
15.
16.已知作用在簡支梁上的力F與力偶矩M=Fl,不計桿件自重和接觸處摩擦,則以下關于固定鉸鏈支座A的約束反力表述正確的是()。
A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同
17.
18.設平面則平面π1與π2的關系為().A.A.平行但不重合B.重合C.垂直D.既不平行,也不垂直19.已知y=ksin2x的一個原函數(shù)為y=cos2x,則k等于().A.A.2B.1C.-lD.-2
20.若f(x)有連續(xù)導數(shù),下列等式中一定成立的是
A.d∫f(x)dx=f(x)dx
B.d∫f(x)dx=f(x)
C.d∫f(x)dx=f(x)+C
D.∫df(x)=f(x)
二、填空題(20題)21.微分方程y''+y=0的通解是______.
22.
23.設區(qū)域D:0≤x≤1,1≤y≤2,則24.
25.設z=xy,則dz=______.
26.
27.
28.設f(x)=xex,則f'(x)__________。
29.
30.
31.
32.y"+8y=0的特征方程是________。
33.
34.35.
36.37.微分方程exy'=1的通解為______.
38.
39.
40.三、計算題(20題)41.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.
42.
43.將f(x)=e-2X展開為x的冪級數(shù).
44.求微分方程y"-4y'+4y=e-2x的通解.
45.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.46.證明:47.48.求微分方程的通解.49.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.50.設平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.51.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.52.求曲線在點(1,3)處的切線方程.53.
54.
55.56.設拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
57.當x一0時f(x)與sin2x是等價無窮小量,則58.
59.
60.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
四、解答題(10題)61.求方程y''-2y'+5y=ex的通解.
62.
63.證明:64.設區(qū)域D為:
65.
66.
67.求直線y=2x+1與直線x=0,x=1和y=0所圍平面圖形的面積,并求該圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積。
68.
69.
70.
五、高等數(shù)學(0題)71.f(z,y)=e-x.sin(x+2y),求
六、解答題(0題)72.
參考答案
1.C本題考查了二階常系數(shù)微分方程的特解的知識點。
因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應設為y*=(Ax+B)x=Ax2+Bx.
2.D
3.B本題考查的知識點為不定積分換元積分法。
因此選B。
4.B
5.B
6.C解析:領導生命周期理論關注下屬的成熟度。
7.C
8.D由拉格朗日定理
9.D本題考查的知識點為收斂級數(shù)的性質(zhì)和絕對收斂的概念.
由絕對收斂級數(shù)的性質(zhì)“絕對收斂的級數(shù)必定收斂”可知應選D.
10.D本題考查的知識點為極限與左極限、右極限的關系.
由于f(x)為分段函數(shù),點x=1為f(x)的分段點,且在x=1的兩側(cè),f(x)的表達式不相同,因此應考慮左極限與右極限.
11.D
12.Ay=3-x,則y'=3-x。ln3*(-x)'=-3-xln3。因此選A。
13.B本題考查的知識點為交換二次積分次序.
由所給二次積分可知積分區(qū)域D可以表示為
1≤y≤2,y≤x≤2,
交換積分次序后,D可以表示為
1≤x≤2,1≤y≤x,
故應選B.
14.D
15.A
16.D
17.D
18.C本題考查的知識點為兩平面的位置關系.
由于平面π1,π2的法向量分別為
可知n1⊥n2,從而π1⊥π2.應選C.
19.D本題考查的知識點為原函數(shù)的概念、復合函數(shù)求導.
20.A解析:若設F'(x)=f(x),由不定積分定義知,∫f(x)dx=F(x)+C。從而
有:d∫f(x)dx=d∫F(x)+C]=F'(x)dx=f(x)dx,故A正確。D中應為∫df(x)=f(x)+C。21.y=C1cosx+C2sinx微分方程y''+y=0的特征方程是r2+1=0,故特征根為r=±i,所以方程的通解為y=C1cosx+C2sinx.
22.23.本題考查的知識點為二重積分的計算。
如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長、寬都為1的正形,可知其面積為1。因此24.本題考查的知識點為重要極限公式。
25.yxy-1dx+xylnxdy
26.
27.f(x)+Cf(x)+C解析:
28.(1+x)ex
29.30.1
31.
32.r2+8r=0本題考查的知識點為二階常系數(shù)線性微分方程特征方程的概念。y"+8y"=0的特征方程為r2+8r=0。
33.
34.1本題考查了一階導數(shù)的知識點。35.2.
本題考查的知識點為二次積分的計算.
由相應的二重積分的幾何意義可知,所給二次積分的值等于長為1,寬為2的矩形的面積值,故為2.或由二次積分計算可知
36.x37.y=-e-x+C本題考查的知識點為可分離變量方程的求解.
可分離變量方程求解的一般方法為:
(1)變量分離;
(2)兩端積分.
由于方程為exy'=1,先變形為
變量分離dy=e-xdx.
兩端積分
為所求通解.
38.
39.5
40.
41.
列表:
說明
42.
43.
44.解:原方程對應的齊次方程為y"-4y'+4y=0,
45.
46.
47.
48.
49.
50.由二重積分物理意義知
51.函數(shù)的定義域為
注意
52.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
53.
54.
55.
56.
57.由等價無窮小量的定義可知58.由一階線性微分方程通解公式有
59.
則
60.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%
61.
62.
63.
64.利用極坐標,區(qū)域D可以表示為0≤θ≤π,0≤r≤2本題考查的知識點為二重積分的計算(極坐標系).
如果積分區(qū)域為圓域或圓的一部分,被積函數(shù)為f(x2+y2)的二重積分,通常利用極坐標計算較方便.
使用極坐標計算二重積分時,要先將區(qū)域D的邊界曲線化為極坐標下的方程表示,以確定出區(qū)域D的不等式表示式,再將積分化為二次積分.
本題考生中常見的錯誤為:
被積函數(shù)中丟掉了r.這是將直角坐標系下的二重積分化為極坐標下的二次積分時常見的錯誤,考生務必要注意.
65.【解析】本題考查的知識點為求二元隱函數(shù)的偏導數(shù)與全微分.
解法1
解法2利用微分運算
【解題指導】
求二元隱函數(shù)的偏導數(shù)有兩種方法:
66.67.解:設所圍圖形面積為A,則
68.
69.
70.
7
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版墊資贖樓業(yè)務風險控制合同2篇
- 2024電商技術服務合同3篇
- 2024年版市區(qū)高級公寓租賃合同版B版
- 2025年度玩具OEM貼牌加工安全標準合同3篇
- 2025年房屋貸款延期合同3篇
- 二零二五年度火鍋店餐飲服務承包合同范本2篇
- 二零二五年度跨境電商產(chǎn)業(yè)園房地產(chǎn)收購合同3篇
- 2024版打膠合同書
- 二零二五年度智能機器人OEM委托研發(fā)與市場拓展合同
- 西南科技大學《西方音樂史(二)》2023-2024學年第一學期期末試卷
- 2025年工程合作協(xié)議書
- 2025年山東省東營市東營區(qū)融媒體中心招聘全媒體采編播專業(yè)技術人員10人歷年高頻重點提升(共500題)附帶答案詳解
- 2025年宜賓人才限公司招聘高頻重點提升(共500題)附帶答案詳解
- 六年級下冊第四單元語文園地-語文園地四-學習任務單
- 《新聞采訪寫作》課程思政優(yōu)秀教學案例(一等獎)
- 竣工驗收程序流程圖
- 清華經(jīng)管工商管理碩士研究生培養(yǎng)計劃
- 口腔科診斷證明書模板
- 管溝挖槽土方計算公式
- 國網(wǎng)浙江省電力公司住宅工程配電設計技術規(guī)定
- 煙花爆竹零售應急預案
評論
0/150
提交評論