




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年河北省廊坊市普通高校對(duì)口單招數(shù)學(xué)自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(22題)1.從1,2,3,4這4個(gè)數(shù)中任取兩個(gè)數(shù),則取出的兩數(shù)之和是奇數(shù)的概率是()A.1/5B.1/5C.2/5D.2/3
2.直線2x-y+7=0與圓(x-b2)+(y-b2)=20的位置關(guān)系是()A.相離B.相交但不過圓心C.相交且過圓心D.相切
3.下列函數(shù)是奇函數(shù)且在區(qū)間(0,1)內(nèi)是單調(diào)遞增的是()A.y=xB.y=lgxC.y=ex
D.y=cosx
4.設(shè)集合A={x|x≤2或x≥6},B={x||x-1|≤3},則為A∩B()A.[-2,2]B.[-2,4]C.[-4,4]D.[2,4]
5.過點(diǎn)M(2,1)的直線與x軸交與P點(diǎn),與y軸交與交與Q點(diǎn),且|MP|=|MQ|,則此直線方程為()A.x-2y+3=0B.2x-y-3=0C.2x+y-5=0D.x+2y-4=0
6.拋物線y2-4x+17=0的準(zhǔn)線方程是()A.x=2B.x=-2C.x=1D.x=-1
7.設(shè)f(x)是定義在R上的偶函數(shù),當(dāng)x≤0時(shí),f(x)=2x2-x,則f(-1)=()A.-3B.-1C.1D.3
8.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a4=2,S10=10,則a7的值為()A.0B.1C.2D.3
9.已知集合,A={0,3},B={-2,0,1,2},則A∩B=()A.空集B.{0}C.{0,3}D.{-2,0,1,2,3}
10.A.B.C.D.
11.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c已知a=,c=2,cosA=2/3,則b=()A.
B.
C.2
D.3
12.若sin(π/2+α)=-3/5,且α∈[π/2,π]則sin(π-2α)=()A.24/25B.12/25C.-12/25D.-24/25
13.下列函數(shù)為偶函數(shù)的是A.B.C.
14.下列各組數(shù)中成等比數(shù)列的是()A.
B.
C.4,8,12
D.
15.設(shè)函數(shù)f(x)=x2+1,則f(x)是()
A.奇函數(shù)B.偶函數(shù)C.非奇非偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)
16.已知拋物線方程為y2=8x,則它的焦點(diǎn)到準(zhǔn)線的距離是()A.8B.4C.2D.6
17.已知sin2α<0,且cosa>0,則α的終邊在()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限
18.設(shè)平面向量a(3,5),b(-2,1),則a-2b的坐標(biāo)是()A.(7,3)B.(-7,-3)C.(-7,3)D.(7,-3)
19.A.偶函數(shù)B.奇函數(shù)C.既不是奇函數(shù),也不是偶函數(shù)D.既是奇函數(shù),也是偶函數(shù)
20.設(shè)是l,m兩條不同直線,α,β是兩個(gè)不同平面,則下列命題中正確的是()A.若l//α,α∩β=m,則l//m
B.若l//α,m⊥l,則m⊥α
C.若l//α,m//α,則l//m
D.若l⊥α,l///β則a⊥β
21.焦點(diǎn)在y軸的負(fù)半軸上且焦點(diǎn)到準(zhǔn)線的距離是2的拋物線的標(biāo)準(zhǔn)方程是()A.y2=-2x
B.x2=-2y
C.y2=-4x
D.x2=-4y
22.為A.23B.24C.25D.26
二、填空題(10題)23.
24.1+3+5+…+(2n-b)=_____.
25.拋物線的焦點(diǎn)坐標(biāo)是_____.
26.函數(shù)f(x)=sin2x-cos2x的最小正周期是_____.
27.
28.
29.已知向量a=(1,-1),b(2,x).若A×b=1,則x=______.
30.
31.設(shè)lgx=a,則lg(1000x)=
。
32.設(shè)平面向量a=(2,sinα),b=(cosα,1/6),且a//b,則sin2α的值是_____.
三、計(jì)算題(10題)33.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
34.己知{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若a3=6,S3=12,求公差d.
35.己知直線l與直線y=2x+5平行,且直線l過點(diǎn)(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.
36.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。
37.某小組有6名男生與4名女生,任選3個(gè)人去參觀某展覽,求(1)3個(gè)人都是男生的概率;(2)至少有兩個(gè)男生的概率.
38.在等差數(shù)列{an}中,前n項(xiàng)和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項(xiàng)公式an.
39.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
40.近年來,某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計(jì)100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):(1)試估計(jì)“可回收垃圾”投放正確的概率;(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率。
41.有四個(gè)數(shù),前三個(gè)數(shù)成等差數(shù)列,公差為10,后三個(gè)數(shù)成等比數(shù)列,公比為3,求這四個(gè)數(shù).
42.求焦點(diǎn)x軸上,實(shí)半軸長為4,且離心率為3/2的雙曲線方程.
四、簡答題(10題)43.己知邊長為a的正方形ABCD,PA丄底面ABCD,PA=a,求證,PC丄BD
44.點(diǎn)A是BCD所在平面外的一點(diǎn),且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
45.求到兩定點(diǎn)A(-2,0)(1,0)的距離比等于2的點(diǎn)的軌跡方程
46.求k為何值時(shí),二次函數(shù)的圖像與x軸(1)有2個(gè)不同的交點(diǎn)(2)只有1個(gè)交點(diǎn)(3)沒有交點(diǎn)
47.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求實(shí)數(shù)x。
48.如圖:在長方體從中,E,F(xiàn)分別為和AB和中點(diǎn)。(1)求證:AF//平面。(2)求與底面ABCD所成角的正切值。
49.解關(guān)于x的不等式
50.已知拋物線的焦點(diǎn)到準(zhǔn)線L的距離為2。(1)求拋物線的方程及焦點(diǎn)下的坐標(biāo)。(2)過點(diǎn)P(4,0)的直線交拋物線AB兩點(diǎn),求的值。
51.已知函數(shù):,求x的取值范圍。
52.在ABC中,BC=,AC=3,sinC=2sinA(1)求AB的值(2)求的值
五、解答題(10題)53.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為DD1,CC1的中點(diǎn).求證:(1)AC⊥BD1;(2)AE//平面BFD1.
54.如圖,AB是⊙O的直徑,P是⊙O所在平面外一點(diǎn),PA垂直于⊙O所在的平面,且PA=AB=10,設(shè)點(diǎn)C為⊙O上異于A,B的任意一點(diǎn).(1)求證:BC⊥平面PAC;(2)若AC=6,求三棱錐C-PAB的體積.
55.如圖,一輛汽車在一條水平的公路上向正西行駛,在A處時(shí)測得公路北側(cè)一山頂D在西偏北30°的方向上,行駛600m后到達(dá)B處,測得此山頂在西偏北75°的方向上,仰角為30°,求此山的高度CD。
56.給定橢圓C:x2/a2+y2/b2(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓已知橢圓C的離心率為/2,且經(jīng)過點(diǎn)(0,1).(1)求橢圓C的方程;(2)求直線l:x—y+3=0被橢圓C的伴隨圓C1所截得的弦長.
57.甲、乙兩人進(jìn)行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
58.已知直線經(jīng)過橢圓C:x2/a2+y2/b2=1(a>b>0)的一個(gè)頂點(diǎn)B和一個(gè)焦點(diǎn)F.(1)求橢圓的離心率;(2)設(shè)P是橢圓C上動(dòng)點(diǎn),求|PF|-|PB|的取值范圍,并求|PF|-|PB||取最小值時(shí)點(diǎn)P的坐標(biāo).
59.
60.
61.已知等比數(shù)列{an}的公比q==2,且a2,a3+1,a4成等差數(shù)列.⑴求a1及an;(2)設(shè)bn=an+n,求數(shù)列{bn}前5項(xiàng)和S5.
62.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
六、單選題(0題)63.A.B.{3}
C.{1,5,6,9}
D.{1,3,5,6,9}
參考答案
1.D古典概型的概率.任意取到兩個(gè)數(shù)的方法有6種:1,2;1,3;1,4;2,3;2,4;3,4;,滿足題意的有4種:1,2;1,4;2,3;3,4;,則所求的概率為4/6=2/3
2.D由題可知,直線2x-y+7=0到圓(x-b)2+(y-b)2=20的距離等于半徑,所以二者相切。
3.A由奇函數(shù)定義已知,y=x既是奇函數(shù)也單調(diào)遞增。
4.A由題可知,B={x|-4≤x≤3},所以A∩B=[-2,2]。
5.D
6.D
7.D函數(shù)奇偶性的應(yīng)用.f(-1)=2(-1)2-(―1)=3.
8.A
9.B集合的運(yùn)算.根據(jù)交集定義,A∩B={0}
10.A
11.D解三角形的余弦定理.由余弦定理,得5=b2+22-2×b×2×2/3,解得b=3(b=1/3舍去),
12.D同角三角函數(shù)的變換,倍角公式.由sin(π/2+α)=-3/5得cosα=-3/5,又α∈[π/2,π],則sinα=4/5,所以sin(π-2α)=sin2α=2sinαcosα==2×4/5×(-3/5)=-24/25.
13.A
14.B由等比數(shù)列的定義可知,B數(shù)列元素之間比例恒定,所以是等比數(shù)列。
15.B由題可知,f(x)=f(-x),所以函數(shù)是偶函數(shù)。
16.B拋物線方程為y2=2px=2*4x,焦點(diǎn)坐標(biāo)為(p/2,0)=(2,0),準(zhǔn)線方程為x=-p/2=-2,則焦點(diǎn)到準(zhǔn)線的距離為p/2-(-p/2)=p=4。
17.D三角函數(shù)值的符號(hào)∵sin2α=2sinα.cosα<0,又cosα>0,∴sinα<0,∴α的終邊在第四象限,
18.A由題可知,a-2b=(3,5)-2(-2,1)=(7,3)。
19.A
20.D空間中直線與平面的位置關(guān)系,平面與平面的位置關(guān)系.對(duì)于A:l與m可能異面,排除A;對(duì)于B;m與α可能平行或相交,排除B;對(duì)于C:l與m可能相交或異面,排除C
21.D
22.A
23.
24.n2,
25.
,因?yàn)閜=1/4,所以焦點(diǎn)坐標(biāo)為.
26.πf(x)=2(1/2sin2x-1/2cos2x)=2sin(2x-π/4),因此最小正周期為π。
27.√2
28.5n-10
29.1平面向量的線性運(yùn)算.由題得A×b=1×2+(-1)×x=2-x=1,x=1。
30.{-1,0,1,2}
31.3+alg(1000x)=lg(1000)+lgx=3+a。
32.2/3平面向量的線性運(yùn)算,三角函數(shù)恒等變換.因?yàn)閍//b,所以2x1/6-sinαcosα=0即sinαcosα=1/3.所以sin2α=2sinαcosα=2/3.
33.解:(1)因?yàn)閒(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因?yàn)閒(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
34.
35.解:(1)設(shè)所求直線l的方程為:2x-y+c=0∵直線l過點(diǎn)(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當(dāng)x=0時(shí),y=-4∴直線l在y軸上的截距為-4
36.
37.
38.解:設(shè)首項(xiàng)為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
39.
40.
41.
42.解:實(shí)半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
43.證明:連接ACPA⊥平面ABCD,PC是斜線,BD⊥ACPC⊥BD(三垂線定理)
44.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導(dǎo)出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。
(2)取BC中點(diǎn)O,以O(shè)為原點(diǎn),過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點(diǎn)O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O(shè)為原點(diǎn),過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,
45.
46.∵△(1)當(dāng)△>0時(shí),又兩個(gè)不同交點(diǎn)(2)當(dāng)A=0時(shí),只有一個(gè)交點(diǎn)(3)當(dāng)△<0時(shí),沒有交點(diǎn)
47.
∵μ//v∴(2x+1.4)=(2-x,3)得
48.
49.
50.(1)拋物線焦點(diǎn)F(,0),準(zhǔn)線L:x=-,∴焦點(diǎn)到準(zhǔn)線的距離p=2∴拋物線的方程為y2=4x,焦點(diǎn)為F(1,0)(2)直線AB與x軸不平行,故可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 激光設(shè)備使用中的安全注意事項(xiàng)試題及答案
- 經(jīng)濟(jì)學(xué)試題及答案
- 藥物研發(fā)中的創(chuàng)新思維探討試題及答案
- 藥物不良反應(yīng)監(jiān)測方法討論試題及答案
- 甘肅方言考試試題及答案
- 明確育嬰師考試各科目的重點(diǎn)方向試題及答案
- 聚焦紡織工程師證書考試的復(fù)習(xí)方式試題及答案
- 西醫(yī)臨床技巧提升與練習(xí)試題及答案
- 藥劑流行病學(xué)基本概念考察題及答案
- 系統(tǒng)架構(gòu)設(shè)計(jì)師在團(tuán)隊(duì)管理中的作用探討試題及答案
- 《通信原理》期末考試復(fù)習(xí)題庫(含答案)
- 施工現(xiàn)場交通安全培訓(xùn)
- 蘇教版一年級(jí)數(shù)學(xué)下冊(cè)第二單元達(dá)標(biāo)測試卷(含答案)
- 2023版管理科學(xué)與工程專業(yè)攻讀碩士學(xué)位研究生培養(yǎng)方案
- 做美食自媒體規(guī)劃
- 《無人機(jī)組裝、調(diào)試與維護(hù)》課程標(biāo)準(zhǔn)(高職)
- 義務(wù)教育質(zhì)量監(jiān)測應(yīng)急專項(xiàng)預(yù)案
- 13人物描寫一組 兩莖燈草 課件
- (正式版)SHT 3045-2024 石油化工管式爐熱效率設(shè)計(jì)計(jì)算方法
- 廣東省廣州市2023年初中學(xué)業(yè)水平考試中考數(shù)學(xué)試卷【含答案】
- 刑法學(xué)教全套課件(完整)-2024鮮版
評(píng)論
0/150
提交評(píng)論