版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,已知∠1=∠2,要使△ABD≌△ACD,需從下列條件中增加一個(gè),錯(cuò)誤的選法是()A.∠ADB=∠ADC B.∠B=∠C C.AB=AC D.DB=DC2.cos30°=()A. B. C. D.3.如圖,AB是定長(zhǎng)線段,圓心O是AB的中點(diǎn),AE、BF為切線,E、F為切點(diǎn),滿足AE=BF,在上取動(dòng)點(diǎn)G,國(guó)點(diǎn)G作切線交AE、BF的延長(zhǎng)線于點(diǎn)D、C,當(dāng)點(diǎn)G運(yùn)動(dòng)時(shí),設(shè)AD=y,BC=x,則y與x所滿足的函數(shù)關(guān)系式為()A.正比例函數(shù)y=kx(k為常數(shù),k≠0,x>0)B.一次函數(shù)y=kx+b(k,b為常數(shù),kb≠0,x>0)C.反比例函數(shù)y=(k為常數(shù),k≠0,x>0)D.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0,x>0)4.如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(―3,6)、B(―9,一3),以原點(diǎn)O為位似中心,相似比為,把△ABO縮小,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)5.下列計(jì)算正確的是()A.2x2+3x2=5x4 B.2x2﹣3x2=﹣1C.2x2÷3x2=x2 D.2x2?3x2=6x46.已知a,b,c在數(shù)軸上的位置如圖所示,化簡(jiǎn)|a+c|-|a-2b|-|c+2b|的結(jié)果是()A.4b+2c B.0 C.2c D.2a+2c7.已知一個(gè)多邊形的每一個(gè)外角都相等,一個(gè)內(nèi)角與一個(gè)外角的度數(shù)之比是3:1,這個(gè)多邊形的邊數(shù)是A.8 B.9 C.10 D.128.大箱子裝洗衣粉36千克,把大箱子里的洗衣粉分裝在4個(gè)大小相同的小箱子里,裝滿后還剩余2千克洗衣粉,則每個(gè)小箱子裝洗衣粉(
)A.6.5千克B.7.5千克C.8.5千克D.9.5千克9.有一組數(shù)據(jù):3,4,5,6,6,則這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)分別是()A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,610.如圖,已知四邊形ABCD,R,P分別是DC,BC上的點(diǎn),E,F(xiàn)分別是AP,RP的中點(diǎn),當(dāng)點(diǎn)P在BC上從點(diǎn)B向點(diǎn)C移動(dòng)而點(diǎn)R不動(dòng)時(shí),那么下列結(jié)論成立的是().A.線段EF的長(zhǎng)逐漸增大 B.線段EF的長(zhǎng)逐漸減少C.線段EF的長(zhǎng)不變 D.線段EF的長(zhǎng)不能確定11.某市2010年元旦這天的最高氣溫是8℃,最低氣溫是﹣2℃,則這天的最高氣溫比最低氣溫高()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃12.如圖,直線m⊥n,在某平面直角坐標(biāo)系中,x軸∥m,y軸∥n,點(diǎn)A的坐標(biāo)為(-4,2),點(diǎn)B的坐標(biāo)為(2,-4),則坐標(biāo)原點(diǎn)為()A.O1 B.O2 C.O3 D.O4二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,點(diǎn)A、B、C是圓O上的三點(diǎn),且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點(diǎn)F,則∠BAF=__.14.如圖,在菱形ABCD中,于E,,,則菱形ABCD的面積是______.15.如圖所示,△ABC的頂點(diǎn)是正方形網(wǎng)格的格點(diǎn),則sinA的值為____.16.如圖,在矩形ABCD中,對(duì)角線BD的長(zhǎng)為1,點(diǎn)P是線段BD上的一點(diǎn),聯(lián)結(jié)CP,將△BCP沿著直線CP翻折,若點(diǎn)B落在邊AD上的點(diǎn)E處,且EP//AB,則AB的長(zhǎng)等于________.17.關(guān)于x的一元二次方程ax2﹣x﹣=0有實(shí)數(shù)根,則a的取值范圍為________.18.若式子有意義,則x的取值范圍是_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,在等腰△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點(diǎn)D且BD=2AD,過(guò)點(diǎn)D作DE⊥AC交BA延長(zhǎng)線于點(diǎn)E,垂足為點(diǎn)F.(1)求tan∠ADF的值;(2)證明:DE是⊙O的切線;(3)若⊙O的半徑R=5,求EF的長(zhǎng).20.(6分)如圖,在中,,點(diǎn)在上運(yùn)動(dòng),點(diǎn)在上,始終保持與相等,的垂直平分線交于點(diǎn),交于,判斷與的位置關(guān)系,并說(shuō)明理由;若,,,求線段的長(zhǎng).21.(6分)“校園安全”受到全社會(huì)的廣泛關(guān)注,某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:接受問(wèn)卷調(diào)查的學(xué)生共有人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為度;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù).22.(8分)閱讀與應(yīng)用:閱讀1:a、b為實(shí)數(shù),且a>0,b>0,因?yàn)?,所以,從而(?dāng)a=b時(shí)取等號(hào)).閱讀2:函數(shù)(常數(shù)m>0,x>0),由閱讀1結(jié)論可知:,所以當(dāng)即時(shí),函數(shù)的最小值為.閱讀理解上述內(nèi)容,解答下列問(wèn)題:?jiǎn)栴}1:已知一個(gè)矩形的面積為4,其中一邊長(zhǎng)為x,則另一邊長(zhǎng)為,周長(zhǎng)為,求當(dāng)x=__________時(shí),周長(zhǎng)的最小值為__________.問(wèn)題2:已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),當(dāng)x=__________時(shí),的最小值為__________.問(wèn)題3:某民辦學(xué)習(xí)每天的支出總費(fèi)用包含以下三個(gè)部分:一是教職工工資6400元;二是學(xué)生生活費(fèi)每人10元;三是其他費(fèi)用.其中,其他費(fèi)用與學(xué)生人數(shù)的平方成正比,比例系數(shù)為0.1.當(dāng)學(xué)校學(xué)生人數(shù)為多少時(shí),該校每天生均投入最低?最低費(fèi)用是多少元?(生均投入=支出總費(fèi)用÷學(xué)生人數(shù))23.(8分)如圖,點(diǎn)在的直徑的延長(zhǎng)線上,點(diǎn)在上,且AC=CD,∠ACD=120°.求證:是的切線;若的半徑為2,求圖中陰影部分的面積.24.(10分)計(jì)算:()﹣2﹣+(﹣2)0+|2﹣|25.(10分)某校為了了解九年級(jí)學(xué)生體育測(cè)試成績(jī)情況,以九年(1)班學(xué)生的體育測(cè)試成績(jī)?yōu)闃颖?,按A、B、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制如下兩幅統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問(wèn)題:(說(shuō)明:A級(jí):90分﹣100分;B級(jí):75分﹣89分;C級(jí):60分﹣74分;D級(jí):60分以下)(1)寫出D級(jí)學(xué)生的人數(shù)占全班總?cè)藬?shù)的百分比為,C級(jí)學(xué)生所在的扇形圓心角的度數(shù)為;(2)該班學(xué)生體育測(cè)試成績(jī)的中位數(shù)落在等級(jí)內(nèi);(3)若該校九年級(jí)學(xué)生共有500人,請(qǐng)你估計(jì)這次考試中A級(jí)和B級(jí)的學(xué)生共有多少人?26.(12分)已知A、B、C三地在同一條路上,A地在B地的正南方3千米處,甲、乙兩人分別從A、B兩地向正北方向的目的地C勻速直行,他們分別和A地的距離s(千米)與所用的時(shí)間t(小時(shí))的函數(shù)關(guān)系如圖所示.(1)圖中的線段l1是(填“甲”或“乙”)的函數(shù)圖象,C地在B地的正北方向千米處;(2)誰(shuí)先到達(dá)C地?并求出甲乙兩人到達(dá)C地的時(shí)間差;(3)如果速度慢的人在兩人相遇后立刻提速,并且比先到者晚1小時(shí)到達(dá)C地,求他提速后的速度.27.(12分)如圖,已知二次函數(shù)y=﹣x2+bx+c(b,c為常數(shù))的圖象經(jīng)過(guò)點(diǎn)A(3,1),點(diǎn)C(0,4),頂點(diǎn)為點(diǎn)M,過(guò)點(diǎn)A作AB∥x軸,交y軸于點(diǎn)D,交該二次函數(shù)圖象于點(diǎn)B,連結(jié)BC.(1)求該二次函數(shù)的解析式及點(diǎn)M的坐標(biāo);(2)若將該二次函數(shù)圖象向下平移m(m>0)個(gè)單位,使平移后得到的二次函數(shù)圖象的頂點(diǎn)落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;(3)點(diǎn)P是直線AC上的動(dòng)點(diǎn),若點(diǎn)P,點(diǎn)C,點(diǎn)M所構(gòu)成的三角形與△BCD相似,請(qǐng)直接寫出所有點(diǎn)P的坐標(biāo)(直接寫出結(jié)果,不必寫解答過(guò)程).
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】
由全等三角形的判定方法ASA證出△ABD≌△ACD,得出A正確;由全等三角形的判定方法AAS證出△ABD≌△ACD,得出B正確;由全等三角形的判定方法SAS證出△ABD≌△ACD,得出C正確.由全等三角形的判定方法得出D不正確;【詳解】A正確;理由:在△ABD和△ACD中,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD≌△ACD(ASA);B正確;理由:在△ABD和△ACD中,∵∠1=∠2,∠B=∠C,AD=AD∴△ABD≌△ACD(AAS);C正確;理由:在△ABD和△ACD中,∵AB=AC,∠1=∠2,AD=AD,∴△ABD≌△ACD(SAS);D不正確,由這些條件不能判定三角形全等;故選:D.【點(diǎn)睛】本題考查了全等三角形的判定方法;三角形全等的判定是中考的熱點(diǎn),熟練掌握全等三角形的判定方法是解決問(wèn)題的關(guān)鍵.2、C【解析】
直接根據(jù)特殊角的銳角三角函數(shù)值求解即可.【詳解】故選C.【點(diǎn)睛】考點(diǎn):特殊角的銳角三角函數(shù)點(diǎn)評(píng):本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握特殊角的銳角三角函數(shù)值,即可完成.3、C【解析】
延長(zhǎng)AD,BC交于點(diǎn)Q,連接OE,OF,OD,OC,OQ,由AE與BF為圓的切線,利用切線的性質(zhì)得到AE與EO垂直,BF與OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE與直角BOF全等,利用全等三角形的對(duì)應(yīng)角相等得到∠A=∠B,利用等角對(duì)等邊可得出三角形QAB為等腰三角形,由O為底邊AB的中點(diǎn),利用三線合一得到QO垂直于AB,得到一對(duì)直角相等,再由∠FQO與∠OQB為公共角,利用兩對(duì)對(duì)應(yīng)角相等的兩三角形相似得到三角形FQO與三角形OQB相似,同理得到三角形EQO與三角形OAQ相似,由相似三角形的對(duì)應(yīng)角相等得到∠QOE=∠QOF=∠A=∠B,再由切線長(zhǎng)定理得到OD與OC分別為∠EOG與∠FOG的平分線,得到∠DOC為∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC與三角形OBC相似,同理三角形DOC與三角形DAO相似,進(jìn)而確定出三角形OBC與三角形DAO相似,由相似得比例,將AD=x,BC=y代入,并將AO與OB換為AB的一半,可得出x與y的乘積為定值,即y與x成反比例函數(shù),即可得到正確的選項(xiàng).【詳解】延長(zhǎng)AD,BC交于點(diǎn)Q,連接OE,OF,OD,OC,OQ,∵AE,BF為圓O的切線,∴OE⊥AE,OF⊥FB,∴∠AEO=∠BFO=90°,在Rt△AEO和Rt△BFO中,∵,∴Rt△AEO≌Rt△BFO(HL),∴∠A=∠B,∴△QAB為等腰三角形,又∵O為AB的中點(diǎn),即AO=BO,∴QO⊥AB,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO,∴△QOF∽△QBO,∴∠B=∠QOF,同理可以得到∠A=∠QOE,∴∠QOF=∠QOE,根據(jù)切線長(zhǎng)定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴,∴AD?BC=AO?OB=AB2,即xy=AB2為定值,設(shè)k=AB2,得到y(tǒng)=,則y與x滿足的函數(shù)關(guān)系式為反比例函數(shù)y=(k為常數(shù),k≠0,x>0).故選C.【點(diǎn)睛】本題屬于圓的綜合題,涉及的知識(shí)有:相似三角形的判定與性質(zhì),切線長(zhǎng)定理,直角三角形全等的判定與性質(zhì),反比例函數(shù)的性質(zhì),以及等腰三角形的性質(zhì),做此題是注意靈活運(yùn)用所學(xué)知識(shí).4、D【解析】
試題分析:方法一:∵△ABO和△A′B′O關(guān)于原點(diǎn)位似,∴△ABO∽△A′B′O且=.∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵點(diǎn)A(―3,6)且相似比為,∴點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是(―3×,6×),∴A′(-1,2).∵點(diǎn)A′′和點(diǎn)A′(-1,2)關(guān)于原點(diǎn)O對(duì)稱,∴A′′(1,―2).故答案選D.考點(diǎn):位似變換.5、D【解析】
先利用合并同類項(xiàng)法則,單項(xiàng)式除以單項(xiàng)式,以及單項(xiàng)式乘以單項(xiàng)式法則計(jì)算即可得到結(jié)果.【詳解】A、2x2+3x2=5x2,不符合題意;B、2x2﹣3x2=﹣x2,不符合題意;C、2x2÷3x2=,不符合題意;D、2x23x2=6x4,符合題意,故選:D.【點(diǎn)睛】本題主要考查了合并同類項(xiàng)法則,單項(xiàng)式除以單項(xiàng)式,單項(xiàng)式乘以單項(xiàng)式法則,正確掌握運(yùn)算法則是解題關(guān)鍵.6、A【解析】由數(shù)軸上點(diǎn)的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a?2b>0,c+2b<0,則原式=a+c?a+2b+c+2b=4b+2c.故選:B.點(diǎn)睛:本題考查了整式的加減以及數(shù)軸,涉及的知識(shí)有:去括號(hào)法則以及合并同類項(xiàng)法則,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.7、A【解析】試題分析:設(shè)這個(gè)多邊形的外角為x°,則內(nèi)角為3x°,根據(jù)多邊形的相鄰的內(nèi)角與外角互補(bǔ)可的方程x+3x=180,解可得外角的度數(shù),再用外角和除以外角度數(shù)即可得到邊數(shù).解:設(shè)這個(gè)多邊形的外角為x°,則內(nèi)角為3x°,由題意得:x+3x=180,解得x=45,這個(gè)多邊形的邊數(shù):360°÷45°=8,故選A.考點(diǎn):多邊形內(nèi)角與外角.8、C【解析】【分析】設(shè)每個(gè)小箱子裝洗衣粉x千克,根據(jù)題意列方程即可.【詳解】設(shè)每個(gè)小箱子裝洗衣粉x千克,由題意得:4x+2=36,解得:x=8.5,即每個(gè)小箱子裝洗衣粉8.5千克,故選C.【點(diǎn)睛】本題考查了列一元一次方程解實(shí)際問(wèn)題,弄清題意,找出等量關(guān)系是解答本題的關(guān)鍵.9、C【解析】
解:在這一組數(shù)據(jù)中6是出現(xiàn)次數(shù)最多的,故眾數(shù)是6;而將這組數(shù)據(jù)從小到大的順序排列3,4,5,6,6,處于中間位置的數(shù)是5,平均數(shù)是:(3+4+5+6+6)÷5=4.8,故選C.【點(diǎn)睛】本題考查眾數(shù);算術(shù)平均數(shù);中位數(shù).10、C【解析】
因?yàn)镽不動(dòng),所以AR不變.根據(jù)三角形中位線定理可得EF=AR,因此線段EF的長(zhǎng)不變.【詳解】如圖,連接AR,∵E、F分別是AP、RP的中點(diǎn),∴EF為△APR的中位線,∴EF=AR,為定值.∴線段EF的長(zhǎng)不改變.故選:C.【點(diǎn)睛】本題考查了三角形的中位線定理,只要三角形的邊AR不變,則對(duì)應(yīng)的中位線的長(zhǎng)度就不變.11、A【解析】
用最高氣溫減去最低氣溫,再根據(jù)有理數(shù)的減法運(yùn)算法則“減去一個(gè)數(shù)等于加上這個(gè)數(shù)的相反數(shù)”即可求得答案.【詳解】8-(-2)=8+2=10℃.即這天的最高氣溫比最低氣溫高10℃.故選A.12、A【解析】試題分析:因?yàn)锳點(diǎn)坐標(biāo)為(-4,2),所以,原點(diǎn)在點(diǎn)A的右邊,也在點(diǎn)A的下邊2個(gè)單位處,從點(diǎn)B來(lái)看,B(2,-4),所以,原點(diǎn)在點(diǎn)B的左邊,且在點(diǎn)B的上邊4個(gè)單位處.如下圖,O1符合.考點(diǎn):平面直角坐標(biāo)系.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、15°【解析】
根據(jù)平行四邊形的性質(zhì)和圓的半徑相等得到△AOB為等邊三角形,根據(jù)等腰三角形的三線合一得到∠BOF=∠AOF=30°,根據(jù)圓周角定理計(jì)算即可.【詳解】解答:連接OB,∵四邊形ABCO是平行四邊形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB為等邊三角形.∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°.由圓周角定理得,故答案為15°.14、【解析】
根據(jù)題意可求AD的長(zhǎng)度,即可得CD的長(zhǎng)度,根據(jù)菱形ABCD的面積=CD×AE,可求菱形ABCD的面積.【詳解】∵sinD=∴∴AD=11∵四邊形ABCD是菱形∴AD=CD=11∴菱形ABCD的面積=11×8=96cm1.故答案為:96cm1.【點(diǎn)睛】本題考查了菱形的性質(zhì),解直角三角形,熟練運(yùn)用菱形性質(zhì)解決問(wèn)題是本題的關(guān)鍵.15、.【解析】
解:連接CE,∵根據(jù)圖形可知DC=1,AD=3,AC=,BE=CE=,∠EBC=∠ECB=45°,∴CE⊥AB,∴sinA=,故答案為.考點(diǎn):勾股定理;三角形的面積;銳角三角函數(shù)的定義.16、【解析】
設(shè)CD=AB=a,利用勾股定理可得到Rt△CDE中,DE2=CE2-CD2=1-2a2,Rt△DEP中,DE2=PD2-PE2=1-2PE,進(jìn)而得出PE=a2,再根據(jù)△DEP∽△DAB,即可得到,即,可得,即可得到AB的長(zhǎng)等于.【詳解】如圖,設(shè)CD=AB=a,則BC2=BD2-CD2=1-a2,
由折疊可得,CE=BC,BP=EP,
∴CE2=1-a2,
∴Rt△CDE中,DE2=CE2-CD2=1-2a2,
∵PE∥AB,∠A=90°,
∴∠PED=90°,
∴Rt△DEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,
∴PE=a2,
∵PE∥AB,
∴△DEP∽△DAB,
∴,即,
∴,
即a2+a-1=0,
解得(舍去),
∴AB的長(zhǎng)等于AB=.故答案為.17、a≥﹣1且a≠1【解析】
利用一元二次方程的定義和判別式的意義得到≠1且△=(﹣1)2﹣4a?(﹣)≥1,然后求出兩個(gè)不等式的公共部分即可.【詳解】根據(jù)題意得a≠1且△=(﹣1)2﹣4a?(﹣)≥1,解得:a≥﹣1且a≠1.故答案為a≥﹣1且a≠1.【點(diǎn)睛】本題考查了根的判別式:一元二次方程ax2+bx+c=1(a≠1)的根與△=b2﹣4ac有如下關(guān)系:當(dāng)△>1時(shí),方程有兩個(gè)不相等的兩個(gè)實(shí)數(shù)根;當(dāng)△=1時(shí),方程有兩個(gè)相等的兩個(gè)實(shí)數(shù)根;當(dāng)△<1時(shí),方程無(wú)實(shí)數(shù)根.18、x≥﹣2且x≠1.【解析】由知,∴,又∵在分母上,∴.故答案為且.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1);(2)見解析;(3)【解析】
(1)AB是⊙O的直徑,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;(2)連接OD,由已知條件證明AC∥OD,又DE⊥AC,可得DE是⊙O的切線;(3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的長(zhǎng).【詳解】解:(1)∵AB是⊙O的直徑,∴∠ADB=90°,∵AB=AC,∴∠BAD=∠CAD,∵DE⊥AC,∴∠AFD=90°,∴∠ADF=∠B,∴tan∠ADF=tan∠B==;(2)連接OD,∵OD=OA,∴∠ODA=∠OAD,∵∠OAD=∠CAD,∴∠CAD=∠ODA,∴AC∥OD,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切線;(3)設(shè)AD=x,則BD=2x,∴AB=x=10,∴x=2,∴AD=2,同理得:AF=2,DF=4,∵AF∥OD,∴△AFE∽△ODE,∴,∴=,∴EF=.【點(diǎn)睛】本題考查切線的證明及圓與三角形相似的綜合,為中考??碱}型,需引起重視.20、(1).理由見解析;(2).【解析】
(1)根據(jù)得到∠A=∠PDA,根據(jù)線段垂直平分線的性質(zhì)得到,利用,得到,于是得到結(jié)論;
(2)連接PE,設(shè)DE=x,則EB=ED=x,CE=8-x,根據(jù)勾股定理即可得到結(jié)論.【詳解】(1).理由如下,∵,∴,∵,∴,∵垂直平分,∴,∴,∴,∴,即.(2)連接,設(shè),由(1)得,,又,,∵,∴,∴,解得,即.【點(diǎn)睛】本題考查了線段垂直平分線的性質(zhì),直角三角形的性質(zhì),勾股定理,正確的作出輔助線解題的關(guān)鍵.21、(1)60,90;(2)見解析;(3)300人【解析】
(1)由了解很少的有30人,占50%,可求得接受問(wèn)卷調(diào)查的學(xué)生數(shù),繼而求得扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角;(2)由(1)可求得了解的人數(shù),繼而補(bǔ)全條形統(tǒng)計(jì)圖;(3)利用樣本估計(jì)總體的方法,即可求得答案.【詳解】解:(1)∵了解很少的有30人,占50%,∴接受問(wèn)卷調(diào)查的學(xué)生共有:30÷50%=60(人);∴扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為:×360°=90°;故答案為60,90;(2)60﹣15﹣30﹣10=5;補(bǔ)全條形統(tǒng)計(jì)圖得:(3)根據(jù)題意得:900×=300(人),則估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù)為300人.【點(diǎn)睛】本題考查了條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖,解題的關(guān)鍵是熟練的掌握條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖的相關(guān)知識(shí)點(diǎn).22、問(wèn)題1:28問(wèn)題2:38問(wèn)題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,生均投入為y元,依題意得:,因?yàn)閤>0,所以,當(dāng)即x=800時(shí),y取最小值2.答:當(dāng)學(xué)校學(xué)生人數(shù)為800人時(shí),該校每天生均投入最低,最低費(fèi)用是2元.【解析】試題分析:?jiǎn)栴}1:當(dāng)時(shí),周長(zhǎng)有最小值,求x的值和周長(zhǎng)最小值;問(wèn)題2:變形,由當(dāng)x+1=時(shí),的最小值,求出x值和的最小值;問(wèn)題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,生均投入為y元,根據(jù)生均投入=支出總費(fèi)用÷學(xué)生人數(shù),列出關(guān)系式,根據(jù)前兩題解法,從而求解.試題解析:?jiǎn)栴}1:∵當(dāng)(x>0)時(shí),周長(zhǎng)有最小值,∴x=2,∴當(dāng)x=2時(shí),有最小值為=3.即當(dāng)x=2時(shí),周長(zhǎng)的最小值為2×3=8;問(wèn)題2:∵y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),∴,∵當(dāng)x+1=(x>-1)時(shí),的最小值,∴x=3,∴x=3時(shí),有最小值為3+3=8,即當(dāng)x=3時(shí),的最小值為8;問(wèn)題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,則生均投入y元,依題意得,因?yàn)閤>0,所以,當(dāng)即x=800時(shí),y取最小值2.答:當(dāng)學(xué)校學(xué)生人數(shù)為800時(shí),該校每天生均投入最低,最低費(fèi)用是2元.23、(1)見解析(2)圖中陰影部分的面積為π.【解析】
(1)連接OC.只需證明∠OCD=90°.根據(jù)等腰三角形的性質(zhì)即可證明;(2)先根據(jù)直角三角形中30°的銳角所對(duì)的直角邊是斜邊的一半求出OD,然后根據(jù)勾股定理求出CD,則陰影部分的面積即為直角三角形OCD的面積減去扇形COB的面積.【詳解】(1)證明:連接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=∠ACD-∠2=90°,即OC⊥CD,∴CD是⊙O的切線;(2)解:∠1=∠2+∠A=60°.∴S扇形BOC==.在Rt△OCD中,∠D=30°,∴OD=2OC=4,∴CD==.∴SRt△OCD=OC×CD=×2×=.∴圖中陰影部分的面積為:-.24、2【解析】
直接利用零指數(shù)冪的性質(zhì)以及負(fù)指數(shù)冪的性質(zhì)、絕對(duì)值的性質(zhì)、二次根式以及立方根的運(yùn)算法則分別化簡(jiǎn)得出答案.【詳解】解:原式=4﹣3+1+2﹣2=2.【點(diǎn)睛】本題考查實(shí)數(shù)的運(yùn)算,難點(diǎn)也在于對(duì)原式中零指數(shù)冪、負(fù)指數(shù)冪、絕對(duì)值、二次根式以及立方根的運(yùn)算化簡(jiǎn),關(guān)鍵要掌握這些知識(shí)點(diǎn).25、(1)4%;(2)72°;(3)380人【解析】
(1)根據(jù)A級(jí)人數(shù)及百分?jǐn)?shù)計(jì)算九年級(jí)(1)班學(xué)生人數(shù),用總?cè)藬?shù)減A、B、D級(jí)人數(shù),得C級(jí)人數(shù),再用C級(jí)人數(shù)÷總?cè)藬?shù)×360°,得C等級(jí)所在的扇形圓心角的度數(shù);(2)將人數(shù)按級(jí)排列,可得該班學(xué)生體育測(cè)試成績(jī)的中位數(shù);(3)用(A級(jí)百分?jǐn)?shù)+B級(jí)百分?jǐn)?shù))×1900,得這次考試中獲得A級(jí)和B級(jí)的九年級(jí)學(xué)生共有的人數(shù);(4)根據(jù)各等級(jí)人數(shù)多少,設(shè)計(jì)合格的等級(jí),使大多數(shù)人能合格.【詳解】解:(1)九年級(jí)(1)班學(xué)生人數(shù)為13÷26%=50人,C級(jí)人數(shù)為50-13-25-2=10人,C等級(jí)所在的扇形圓心角的度數(shù)為10÷50×360°=72°,故答案為72°;(2)共50人,其中A級(jí)人數(shù)13人,B級(jí)人數(shù)25人,故該班學(xué)生體育測(cè)試成績(jī)的中位數(shù)落在B等級(jí)內(nèi),故答案為B;(3)估計(jì)這次考試中獲得A級(jí)和B級(jí)的九年級(jí)學(xué)生共有(26%+25÷50)×1900=1444人;(4)建議:把到達(dá)A級(jí)和B級(jí)的學(xué)生定為合格,(答案不唯一).26、(1)乙;3;(2)甲先到達(dá),到達(dá)目的地的時(shí)間差為小時(shí);(3)速度慢的人提速后的速度為千米/小時(shí).【解析】分析:(1)根據(jù)題意結(jié)合所給函數(shù)圖象進(jìn)行判斷即可;(2)由所給函數(shù)圖象中的信息先求出二人所對(duì)應(yīng)的函數(shù)解析式,再由解析式結(jié)合圖中信息求出二人到達(dá)C地的時(shí)間并進(jìn)行比較、判斷即可得到本問(wèn)答案;(3)根據(jù)圖象中的信息結(jié)合(2)中的結(jié)論進(jìn)行解答即可.詳解:(1)由題意結(jié)合圖象中的信息可知:圖中線段l1是乙的圖象;C地在B地的正北方6-3=3(千米)處.(2)甲先到達(dá).設(shè)甲的函數(shù)解析式為s=kt,則有4=t,∴s=4t.∴當(dāng)s=6時(shí),t=.設(shè)乙的函數(shù)解析式為s=nt+3,則有4=n+3,即n=1.∴乙的函數(shù)解析式為s=t+3.∴當(dāng)s=6時(shí),t=3.∴甲、乙到達(dá)目的地的時(shí)間差為:(小時(shí)).(3)設(shè)提速后乙的速度為v千米/小時(shí),∵相遇處距離A地4千米,而C地距A地6千米,∴相遇后需行2千米.又∵原來(lái)相遇后乙行2小時(shí)才到達(dá)C地,∴乙提速后2千米應(yīng)用時(shí)1.5小時(shí).即,解得:,答
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版節(jié)能環(huán)保設(shè)施運(yùn)營(yíng)管理合同范本3篇
- 二零二五年汽車租賃公司兼職司機(jī)合同3篇
- 二零二五版家居用品寄售代理合同范本3篇
- 二零二五版草原生態(tài)補(bǔ)償機(jī)制承包合同3篇
- 二零二五版插畫師合作合同范本-漫畫創(chuàng)作合作與版權(quán)歸屬協(xié)議3篇
- 二零二五版建筑工程施工企業(yè)施工許可證注銷合同3篇
- 二零二五版安徽農(nóng)民工就業(yè)跟蹤服務(wù)合同范本3篇
- 2025版塊石石材礦山投資合作合同3篇
- 基于2025年度行業(yè)標(biāo)準(zhǔn)的招投標(biāo)實(shí)習(xí)合同3篇
- 二零二五年金融創(chuàng)新抵押借款合同范本分享3篇
- 蔣詩(shī)萌小品《誰(shuí)殺死了周日》臺(tái)詞完整版
- TB 10010-2008 鐵路給水排水設(shè)計(jì)規(guī)范
- 黑色素的合成與美白產(chǎn)品的研究進(jìn)展
- 建筑史智慧樹知到期末考試答案2024年
- 金蓉顆粒-臨床用藥解讀
- 社區(qū)健康服務(wù)與管理教案
- 2023-2024年家政服務(wù)員職業(yè)技能培訓(xùn)考試題庫(kù)(含答案)
- 2023年(中級(jí))電工職業(yè)技能鑒定考試題庫(kù)(必刷500題)
- 藏歷新年文化活動(dòng)的工作方案
- 果酒釀造完整
- 第4章-理想氣體的熱力過(guò)程
評(píng)論
0/150
提交評(píng)論