江蘇省南通市田家炳中學2022-2023學年高三第一次模擬考試數(shù)學試卷含解析_第1頁
江蘇省南通市田家炳中學2022-2023學年高三第一次模擬考試數(shù)學試卷含解析_第2頁
江蘇省南通市田家炳中學2022-2023學年高三第一次模擬考試數(shù)學試卷含解析_第3頁
江蘇省南通市田家炳中學2022-2023學年高三第一次模擬考試數(shù)學試卷含解析_第4頁
江蘇省南通市田家炳中學2022-2023學年高三第一次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2023年高考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數(shù)z1=3+4i,z2=a+i,且z1是實數(shù),則實數(shù)a等于()A. B. C.- D.-2.閱讀如圖的程序框圖,若輸出的值為25,那么在程序框圖中的判斷框內(nèi)可填寫的條件是()A. B. C. D.3.復數(shù)滿足(為虛數(shù)單位),則的值是()A. B. C. D.4.已知無窮等比數(shù)列的公比為2,且,則()A. B. C. D.5.已知,則()A. B. C. D.26.已知隨機變量的分布列是則()A. B. C. D.7.一場考試需要2小時,在這場考試中鐘表的時針轉(zhuǎn)過的弧度數(shù)為()A. B. C. D.8.的展開式中各項系數(shù)的和為2,則該展開式中常數(shù)項為A.-40 B.-20 C.20 D.409.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于10.點是單位圓上不同的三點,線段與線段交于圓內(nèi)一點M,若,則的最小值為()A. B. C. D.11.若復數(shù),則()A. B. C. D.2012.若的二項式展開式中二項式系數(shù)的和為32,則正整數(shù)的值為()A.7 B.6 C.5 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知,若,則________.14.已知橢圓C:1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,橢圓的焦距為2c,過C外一點P(c,2c)作線段PF1,PF2分別交橢圓C于點A、B,若|PA|=|AF1|,則_____.15.過直線上一點作圓的兩條切線,切點分別為,,則的最小值是______.16.設定義域為的函數(shù)滿足,則不等式的解集為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知(1)當時,判斷函數(shù)的極值點的個數(shù);(2)記,若存在實數(shù),使直線與函數(shù)的圖象交于不同的兩點,求證:.18.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為(),將曲線向左平移2個單位長度得到曲線.(1)求曲線的普通方程和極坐標方程;(2)設直線與曲線交于兩點,求的取值范圍.19.(12分)中國古建筑中的窗飾是藝術和技術的統(tǒng)一體,給人于美的享受.如圖(1)為一花窗;圖(2)所示是一扇窗中的一格,呈長方形,長30cm,寬26cm,其內(nèi)部窗芯(不含長方形邊框)用一種條形木料做成,由兩個菱形和六根支條構(gòu)成,整個窗芯關于長方形邊框的兩條對稱軸成軸對稱.設菱形的兩條對角線長分別為xcm和ycm,窗芯所需條形木料的長度之和為L.(1)試用x,y表示L;(2)如果要求六根支條的長度均不小于2cm,每個菱形的面積為130cm2,那么做這樣一個窗芯至少需要多長的條形木料(不計榫卯及其它損耗)?20.(12分)如圖,在三棱錐中,平面平面,,.點,,分別為線段,,的中點,點是線段的中點.(1)求證:平面.(2)判斷與平面的位置關系,并證明.21.(12分)如圖,在斜三棱柱中,已知為正三角形,D,E分別是,的中點,平面平面,.(1)求證:平面;(2)求證:平面.22.(10分)已知三棱柱中,,是的中點,,.(1)求證:;(2)若側(cè)面為正方形,求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】分析:計算,由z1,是實數(shù)得,從而得解.詳解:復數(shù)z1=3+4i,z2=a+i,.所以z1,是實數(shù),所以,即.故選A.點睛:本題主要考查了復數(shù)共軛的概念,屬于基礎題.2、C【解析】

根據(jù)循環(huán)結(jié)構(gòu)的程序框圖,帶入依次計算可得輸出為25時的值,進而得判斷框內(nèi)容.【詳解】根據(jù)循環(huán)程序框圖可知,則,,,,,此時輸出,因而不符合條件框的內(nèi)容,但符合條件框內(nèi)容,結(jié)合選項可知C為正確選項,故選:C.【點睛】本題考查了循環(huán)結(jié)構(gòu)程序框圖的簡單應用,完善程序框圖,屬于基礎題.3、C【解析】

直接利用復數(shù)的除法的運算法則化簡求解即可.【詳解】由得:本題正確選項:【點睛】本題考查復數(shù)的除法的運算法則的應用,考查計算能力.4、A【解析】

依據(jù)無窮等比數(shù)列求和公式,先求出首項,再求出,利用無窮等比數(shù)列求和公式即可求出結(jié)果?!驹斀狻恳驗闊o窮等比數(shù)列的公比為2,則無窮等比數(shù)列的公比為。由有,,解得,所以,,故選A?!军c睛】本題主要考查無窮等比數(shù)列求和公式的應用。5、B【解析】

結(jié)合求得的值,由此化簡所求表達式,求得表達式的值.【詳解】由,以及,解得..故選:B【點睛】本小題主要考查利用同角三角函數(shù)的基本關系式化簡求值,考查二倍角公式,屬于中檔題.6、C【解析】

利用分布列求出,求出期望,再利用期望的性質(zhì)可求得結(jié)果.【詳解】由分布列的性質(zhì)可得,得,所以,,因此,.故選:C.【點睛】本題考查離散型隨機變量的分布列以及期望的求法,是基本知識的考查.7、B【解析】

因為時針經(jīng)過2小時相當于轉(zhuǎn)了一圈的,且按順時針轉(zhuǎn)所形成的角為負角,綜合以上即可得到本題答案.【詳解】因為時針旋轉(zhuǎn)一周為12小時,轉(zhuǎn)過的角度為,按順時針轉(zhuǎn)所形成的角為負角,所以經(jīng)過2小時,時針所轉(zhuǎn)過的弧度數(shù)為.故選:B【點睛】本題主要考查正負角的定義以及弧度制,屬于基礎題.8、D【解析】令x=1得a=1.故原式=.的通項,由5-2r=1得r=2,對應的常數(shù)項=80,由5-2r=-1得r=3,對應的常數(shù)項=-40,故所求的常數(shù)項為40,選D解析2.用組合提取法,把原式看做6個因式相乘,若第1個括號提出x,從余下的5個括號中選2個提出x,選3個提出;若第1個括號提出,從余下的括號中選2個提出,選3個提出x.故常數(shù)項==-40+80=409、D【解析】

試題分析:由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D.考點:平面與平面的位置關系,平面的基本性質(zhì)及其推論.10、D【解析】

由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當且僅當時等號成立),,的最小值為,故選:D.【點睛】本題主要考查平面向量數(shù)量積的應用,考查基本不等式的應用,屬于中檔題.11、B【解析】

化簡得到,再計算模長得到答案.【詳解】,故.故選:.【點睛】本題考查了復數(shù)的運算,復數(shù)的模,意在考查學生的計算能力.12、C【解析】

由二項式系數(shù)性質(zhì),的展開式中所有二項式系數(shù)和為計算.【詳解】的二項展開式中二項式系數(shù)和為,.故選:C.【點睛】本題考查二項式系數(shù)的性質(zhì),掌握二項式系數(shù)性質(zhì)是解題關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

由題意先求得的值,可得,再令,可得結(jié)論.【詳解】已知,,,,令,可得,故答案為:1.【點睛】本題主要考查二項式定理的應用,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的賦值,求展開式的系數(shù)和,可以簡便的求出答案,屬于基礎題.14、【解析】

根據(jù)條件可得判斷OA∥PF2,且|PF2|=2|OA|,從而得到點A為橢圓上頂點,則有b=c,解出B的坐標即可得到比值.【詳解】因為|PA|=|AF1|,所以點A是線段PF1的中點,又因為點O為線段F1F2的中點,所以OA∥PF2,且|PF2|=2|OA|,因為點P(c,2c),所以PF2⊥x軸,則|PF2|=2c,所以OA⊥x軸,則點A為橢圓上頂點,所以|OA|=b,則2b=2c,所以b=c,ac,設B(c,m)(m>0),則,解得mc,所以|BF2|c,則.故答案為:2.【點睛】本題考查橢圓的基本性質(zhì),考查直線位置關系的判斷,方程思想,屬于中檔題.15、【解析】

由切線的性質(zhì),可知,切由直角三角形PAO,PBO,即可設,進而表示,由圖像觀察可知進而求出x的范圍,再用的式子表示,整理后利用換元法與雙勾函數(shù)求出最小值.【詳解】由題可知,,設,由切線的性質(zhì)可知,則顯然,則或(舍去)因為令,則,由雙勾函數(shù)單調(diào)性可知其在區(qū)間上單調(diào)遞增,所以故答案為:【點睛】本題考查在以直線與圓的位置關系為背景下求向量數(shù)量積的最值問題,應用函數(shù)形式表示所求式子,進而利用分析函數(shù)單調(diào)性或基本不等式求得最值,屬于較難題.16、【解析】

根據(jù)條件構(gòu)造函數(shù)F(x),求函數(shù)的導數(shù),利用函數(shù)的單調(diào)性即可得到結(jié)論.【詳解】設F(x),則F′(x),∵,∴F′(x)>0,即函數(shù)F(x)在定義域上單調(diào)遞增.∵∴,即F(x)<F(2x)∴,即x>1∴不等式的解為故答案為:【點睛】本題主要考查函數(shù)單調(diào)性的判斷和應用,根據(jù)條件構(gòu)造函數(shù)是解決本題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)沒有極值點;(2)證明見解析【解析】

(1)求導可得,再求導可得,則在遞增,則,從而在遞增,即可判斷;(2)轉(zhuǎn)化問題為存在且,使,可得,由(1)可知,即,則,整理可得,則,設,則可整理為,設,利用導函數(shù)可得,即可求證.【詳解】(1)當時,,,所以在遞增,所以,所以在遞增,所以函數(shù)沒有極值點.(2)由題,,若存在實數(shù),使直線與函數(shù)的圖象交于不同的兩點,即存在且,使.由可得,,由(1)可知,可得.,所以,即,下面證明,只需證明:,令,則證,即.設,那么,所以,所以,即【點睛】本題考查利用導函數(shù)求函數(shù)的極值點,考查利用導函數(shù)解決雙變量問題,考查運算能力與推理論證能力.18、(1)的極坐標方程為,普通方程為;(2)【解析】

(1)根據(jù)三角函數(shù)恒等變換可得,,可得曲線的普通方程,再運用圖像的平移得依題意得曲線的普通方程為,利用極坐標與平面直角坐標互化的公式可得方程;(2)法一:將代入曲線的極坐標方程得,運用韋達定理可得,根據(jù),可求得的范圍;法二:設直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),代入曲線的普通方程得,運用韋達定理可得,根據(jù),可求得的范圍;【詳解】(1),,即曲線的普通方程為,依題意得曲線的普通方程為,令,得曲線的極坐標方程為;(2)法一:將代入曲線的極坐標方程得,則,,,異號,,,;法二:設直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),代入曲線的普通方程得,則,,,異號,,.【點睛】本題考查參數(shù)方程與普通方程,極坐標方程與平面直角坐標方程之間的轉(zhuǎn)化,求解幾何量的取值范圍,關鍵在于明確極坐標系中極徑和極角的幾何含義,直線的參數(shù)方程,參數(shù)的幾何意義,屬于中檔題.19、(1)(2)【解析】試題分析:(1)由條件可先求水平方向每根支條長,豎直方向每根支條長為,因此所需木料的長度之和L=(2)先確定范圍由可得,再由面積為130cm2,得,轉(zhuǎn)化為一元函數(shù),令,則在上為增函數(shù),解得L有最小值.試題解析:(1)由題意,水平方向每根支條長為cm,豎直方向每根支條長為cm,菱形的邊長為cm.從而,所需木料的長度之和L=cm.(2)由題意,,即,又由可得.所以.令,其導函數(shù)在上恒成立,故在上單調(diào)遞減,所以可得.則=.因為函數(shù)和在上均為增函數(shù),所以在上為增函數(shù),故當,即時L有最小值.答:做這樣一個窗芯至少需要cm長的條形木料.考點:函數(shù)應用題20、(1)見解析(2)平面.見解析【解析】

(1)要證平面,只需證明,,即可求得答案;(2)連接交于點,連接,根據(jù)已知條件求證,即可判斷與平面的位置關系,進而求得答案.【詳解】(1),為邊的中點,,平面平面,平面平面,平面,平面,,在內(nèi),,為所在邊的中點,,又,,平面.(2)判斷可知,平面,證明如下:連接交于點,連接.、、分別為邊、、的中點,.又是的重心,,,平面,平面,平面.【點睛】本題主要考查了求證線面垂直和線面平行,解題關鍵是掌握線面垂直判定定理和線面平行判斷定理,考查了分析能力和空間想象能力,屬于中檔題.21、(1)見解析;(2)見解析【解析】

(1)根據(jù),分別是,的中點,即可證明,從而可證平面;(2)先根據(jù)為正三角形,且D是的中點,證出,再根據(jù)平面平面,得到平面,從而得到,結(jié)合,即可得證.【詳解】(1)∵,分別是,的中點∴∵平面,平面∴平面.(2)∵為正三角形,且D是的中點∴∵平面平面,且平面平面,平面∴平面∵平面∴∵且∴∵,平面,且∴平面.【點睛】本題考查直線與平面平行的判定,面面垂直的性質(zhì)等,解題時要認真審題,注意空間思維能力的培養(yǎng),中檔題.22、(1)證明見解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論