高二數(shù)學(xué)文科的重要知識點分析_第1頁
高二數(shù)學(xué)文科的重要知識點分析_第2頁
高二數(shù)學(xué)文科的重要知識點分析_第3頁
高二數(shù)學(xué)文科的重要知識點分析_第4頁
高二數(shù)學(xué)文科的重要知識點分析_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

高二數(shù)學(xué)文科的重要知識點分析高二一年,強人將浮出水面,鳥人將沉入海底。高二重點解決三個問題:一,吃透課本;二,找尋適合自己的學(xué)習(xí)方法;三,總結(jié)自己考試技巧,形成習(xí)慣。為了幫助你的學(xué)習(xí)更上一層樓,以下是小編給大家整理的高二數(shù)學(xué)文科的重要知識點分析,希望大家能夠喜歡!高二數(shù)學(xué)文科的重要知識點分析1一、直線與圓:1、直線的傾斜角的范圍是在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時,規(guī)定傾斜角為0;過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。3、直線方程:⑴點斜式:直線過點斜率為,則直線方程為,⑵斜截式:直線在軸上的截距為和斜率,則直線方程為4、直線與直線的位置關(guān)系:(1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=05、點到直線的距離公式;兩條平行線與的距離是6、圓的標(biāo)準(zhǔn)方程:.⑵圓的一般方程:注意能將標(biāo)準(zhǔn)方程化為一般方程7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.①相離②相切③相交9、解決直線與圓的關(guān)系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長二、圓錐曲線方程:1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a<2c;③e=;④實軸長為2a,虛軸長為2b,焦距為2c;漸進(jìn)線或c2=a2+b23、拋物線:①方程y2=2px注意還有三個,能區(qū)別開口方向;②定4、直線被圓錐曲線截得的弦長公式:題:1、,.(1);(2).2、數(shù)量積的定義:已知兩個非零向量a和b,它們的夾角為θ,則數(shù)量4、向量的運算過程中完全平方公式等照樣適用:三、直線、平面、簡單幾何體:1、學(xué)會三視圖的分析:2、斜二測畫法應(yīng)注意的地方:(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應(yīng)軸3、表(側(cè))面積與體積公式:⑷球體:①表面積:S=;②體積:V=4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。(2)平面與平面平行:①線面平行面面平行。(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;⑵直線與平面所成的角:直線與射影所成的角高二數(shù)學(xué)文科的重要知識點分析21.函數(shù)的奇偶性(1)若f(x)是偶函數(shù),那么f(x)=f(-x);(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;2.復(fù)合函數(shù)的有關(guān)問題(1)復(fù)合函數(shù)定義域求法:若已知的定義域為[a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;3.函數(shù)圖像(或方程曲線的對稱性)(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;在C2上,反之亦然;Cfxyyxayx+a)的對稱曲線C2的方程為f(y-axa=0(或f(-y+a,-x+a)=0);(4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;(5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;高二數(shù)學(xué)文科的重要知識點分析31、圓的標(biāo)準(zhǔn)方程:圓心為A(a,b),半徑為r的圓的方程2、點與圓的關(guān)系的判斷方法:(1),點在圓外(2),點在圓上(3),點在圓內(nèi)4.1.2圓的一般方程1、圓的一般方程:2、圓的一般方程的特點:有xy這樣的二次項.(2)圓的一般方程中有三個特定的系數(shù)D、E、F,因之只要求出這三個系數(shù),圓的方程就確定了.(3)、與圓的標(biāo)準(zhǔn)方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標(biāo)準(zhǔn)方程則指出了圓心坐標(biāo)與半徑大小,幾何特征較明顯。4.2.1圓與圓的位置關(guān)系1、用點到直線的距離來判斷直線與圓的位置關(guān)系.4.2.2圓與圓的位置關(guān)系4.2.3直線與圓的方程的應(yīng)用1、利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;2、過程與方法用坐標(biāo)法解決幾何問題的步驟:第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問題中的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;第二步:通過代數(shù)運算,解決代數(shù)問題;第三步:將代數(shù)運算結(jié)果“翻譯”

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論