高一數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)_第1頁(yè)
高一數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)_第2頁(yè)
高一數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)_第3頁(yè)
高一數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)_第4頁(yè)
高一數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

名稱指數(shù)函數(shù)對(duì)數(shù)函數(shù)一般形式Y(jié)=ax(a>0且aM1)y=logax(a>0,aM1)定義域(_8,+OO)(0,+a)值域(0,+a)(_O,+OO)過(guò)定點(diǎn)0,1)1,0)2、方程mx2+2mx+1=0有一根大于1,另一根小于1,則實(shí)根m的取值范圍是.九■指數(shù)式與對(duì)數(shù)式1冪的有關(guān)概念(1)零指數(shù)幕ao=1(a豐0)(2)負(fù)整數(shù)指數(shù)幕a-n=丄(a2、方程mx2+2mx+1=0有一根大于1,另一根小于1,則實(shí)根m的取值范圍是.九■指數(shù)式與對(duì)數(shù)式1冪的有關(guān)概念(1)零指數(shù)幕ao=1(a豐0)(2)負(fù)整數(shù)指數(shù)幕a-n=丄(a豐0,neN*)an(3)正分?jǐn)?shù)指數(shù)幕a:=n'am(a>0,m,neN*,n>1);(4)負(fù)分?jǐn)?shù)指數(shù)幕a-:=丄=—^(a>0,m,neN*,n>1)namman(5)0的正分?jǐn)?shù)指數(shù)幕等于0,0的負(fù)分?jǐn)?shù)指數(shù)幕沒(méi)有意義.2.有理數(shù)指數(shù)冪的性質(zhì)(1)ara$=ar+s(a>0,r,seQ)(2)(ar/=ars(a>0,r,seQ)(3)(ab)r=ab(a>0,b>0,reQ)3.根式根式的性質(zhì):當(dāng)n是奇數(shù),則nan=a;當(dāng)n是偶數(shù),則<an=a4.對(duì)數(shù)對(duì)數(shù)的概念:如果ab=N(a>0,a豐1),那么b叫做以a為底N的對(duì)數(shù),記b=loga對(duì)數(shù)的性質(zhì):①零與負(fù)數(shù)沒(méi)有對(duì)數(shù)②log1=0③loga=1aa對(duì)數(shù)的運(yùn)算性質(zhì)N(a>0,a豐1)logMN=logM+logN對(duì)數(shù)換底公式:loglogNN=m(N>0,a>0且a豐1,m>0且m豐1)logam對(duì)數(shù)的降幕公式:lognNn=logN(N>0,a>0且a豐1)mma例:yx丄(0.1)-2(a3b-3)2十■指數(shù)函數(shù)與對(duì)數(shù)函數(shù)指數(shù)函數(shù)y=ax與對(duì)數(shù)函數(shù)y=logax(a>0,aM1)互為反函數(shù)(x,4ab-1)3⑵lg8+lgl25-lg2-lg5lgc10-lg0.11、圖象單調(diào)性a>1,在(0,+a)上為增函數(shù)OVavl,在(-8,+a)上為減函數(shù)OVavl,OVavl,在(-8,+a)上為減函數(shù)OVavl,在(0,+8)上為減函數(shù)2.錯(cuò)底數(shù)yvl?y>0?yvO?函比比較兩個(gè)幕值的題,解決這類問(wèn)相同還是指數(shù)相同,可利用指數(shù)性:指數(shù)相同,數(shù)的底數(shù)與圖象較大小同理)大小,是一類易題,首先要分清同,如果底數(shù)相函數(shù)的單調(diào)可以利用指數(shù)關(guān)系(對(duì)數(shù)式記住下列特殊值為底數(shù)的函數(shù)圖象:3、研究指數(shù),對(duì)數(shù)函數(shù)問(wèn)題,盡量化為同底,并注意對(duì)數(shù)問(wèn)題中的定義域限制4、指數(shù)函數(shù)與對(duì)數(shù)函數(shù)中的絕大部分問(wèn)題是指數(shù)函數(shù)與對(duì)數(shù)函數(shù)與其他函數(shù)的復(fù)合問(wèn)題,討論復(fù)合函數(shù)的單調(diào)性是解決問(wèn)題的重要途徑。例:1、(1)y=JlgX+lg(5-3x)的定義域?yàn)?(2)y二2x-3的值域?yàn)?(3)y二lg(-x2+x)的遞增區(qū)間為,值域?yàn)?'d)log2ix-4<0,則23、要使函數(shù)y二1+2x+4xa在xw(-s,l]上y>0恒成立。求a的取值范圍。4.若a24.若a2x+2ax一丄WO(a>0且aMl),求y=2a2x—3?ax+4的值域.十一.函數(shù)的圖象變換(1)1、平移變換:(左+右-,上+下-)即y=f(x)——h^o,韋移卄>0^左移>y=f(x+h)y=f(x)————o,——移——>o————>y=f(x)+k①對(duì)稱變換:(對(duì)稱誰(shuí),誰(shuí)不變,對(duì)稱原點(diǎn)都要變)f(x)f(x)f(x)f(x)x帝軸——xTy=-f(x)、-命fl——yTy=f(-x)原——點(diǎn)Ty=-f(-xTxy=f-1(x)——:y軸右邊不變,左邊為右f(x)——邊部分的——爾圖Tyf(lxf(x)——?!簟獂軸上方——圖,將————x軸——下方圖——上翻|f(x)1.f(x)的圖象過(guò)點(diǎn)(0,1),則f(4-x)的反函數(shù)的圖象過(guò)點(diǎn)()A.(3,0)B.(0,3)C.(4,1)D.(1,4)2.作出下列函數(shù)的簡(jiǎn)圖:1)y=|log1)y=|log2x|2)y=|2x-1|;3)y=2|x|;十二.函數(shù)的其他性質(zhì)1.函數(shù)的單調(diào)性通常也可以以下列形式表達(dá)12>0單調(diào)遞增x一x12f(X1)_f(X2)<0單調(diào)遞減X一X122.函數(shù)的奇偶性也可以通過(guò)下面方法證明:f(x)+f(-x)=0奇函數(shù)f(x)-f(-x)=0偶函

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論