![2018版高中數(shù)學第二章圓錐曲線與方程疑難規(guī)律方法學案2-1_第1頁](http://file4.renrendoc.com/view/2e034c45540e6374ecfd544eaa9d431e/2e034c45540e6374ecfd544eaa9d431e1.gif)
![2018版高中數(shù)學第二章圓錐曲線與方程疑難規(guī)律方法學案2-1_第2頁](http://file4.renrendoc.com/view/2e034c45540e6374ecfd544eaa9d431e/2e034c45540e6374ecfd544eaa9d431e2.gif)
![2018版高中數(shù)學第二章圓錐曲線與方程疑難規(guī)律方法學案2-1_第3頁](http://file4.renrendoc.com/view/2e034c45540e6374ecfd544eaa9d431e/2e034c45540e6374ecfd544eaa9d431e3.gif)
![2018版高中數(shù)學第二章圓錐曲線與方程疑難規(guī)律方法學案2-1_第4頁](http://file4.renrendoc.com/view/2e034c45540e6374ecfd544eaa9d431e/2e034c45540e6374ecfd544eaa9d431e4.gif)
![2018版高中數(shù)學第二章圓錐曲線與方程疑難規(guī)律方法學案2-1_第5頁](http://file4.renrendoc.com/view/2e034c45540e6374ecfd544eaa9d431e/2e034c45540e6374ecfd544eaa9d431e5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
學必求其心得,業(yè)必貴于專精學必求其心得,業(yè)必貴于專精PAGEPAGE41學必求其心得,業(yè)必貴于專精第二章圓錐曲線與方程1利用橢圓的定義解題橢圓定義反映了橢圓的本質(zhì)特征,揭示了曲線存在的幾何性質(zhì)。有些問題,如果恰當運用定義來解決,可以起到事半功倍的效果,下面通過幾個例子進行說明.1.求最值例1線段|AB|=4,|PA|+|PB|=6,M是AB的中點,當P點在同一平面內(nèi)運動時,PM的長度的最小值是()A。2B.eq\r(2)C。eq\r(5)D。5解析由于|PA|+|PB|=6>4=|AB|,故由橢圓定義知P點的軌跡是以M為原點,A、B為焦點的橢圓,且a=3,c=2,∴b=eq\r(a2-c2)=eq\r(5)。于是PM的長度的最小值是b=eq\r(5).答案C2.求動點坐標例2橢圓eq\f(x2,9)+eq\f(y2,25)=1上到兩個焦點F1,F(xiàn)2的距離之積最大的點的坐標是________.解析設(shè)橢圓上的動點為P,由橢圓的定義可知|PF1|+|PF2|=2a所以|PF1|·|PF2|≤eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(|PF1|+|PF2|,2)))2=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(10,2)))2=25,當且僅當|PF1|=|PF2|時取等號。由eq\b\lc\{\rc\(\a\vs4\al\co1(|PF1|+|PF2|=10,,|PF1|=|PF2|,))解得|PF1|=|PF2|=5=a,此時點P恰好是橢圓短軸的兩端點,即所求點的坐標為(±3,0)。答案(±3,0)點評由橢圓的定義可得“|PF1|+|PF2|=10",即兩個正數(shù)|PF1|,|PF2|的和為定值,結(jié)合基本不等式可求|PF1|,|PF2|積的最大值,結(jié)合圖形可得所求點P的坐標.3。求焦點三角形面積例3如圖所示,已知橢圓的方程為eq\f(x2,4)+eq\f(y2,3)=1,若點P在第二象限,且∠PF1F2=120°,求△PF1F2的面積.解由已知,得a=2,b=eq\r(3),所以c=eq\r(a2-b2)=1,|F1F2|=2c=2.在△PF1F2|PF2|2=|PF1|2+|F1F2|2-2|PF1|·|F1F即|PF2|2=|PF1|2+4+2|PF1|, ①由橢圓定義,得|PF1|+|PF2|=4,即|PF2|=4-|PF1|。 ②將②代入①,得|PF1|=eq\f(6,5).所以=eq\f(1,2)|PF1|·|F1F2|·sin120°=eq\f(1,2)×eq\f(6,5)×2×eq\f(\r(3),2)=eq\f(3\r(3),5),即△PF1F2的面積是eq\f(3\r(3),5).點評在△PF1F2中,由橢圓的定義及余弦定理可得關(guān)于|PF1|,|PF2|的方程組,消去|PF2|可求|PF1從以上問題,我們不難發(fā)現(xiàn),凡涉及橢圓上的點及橢圓焦點的問題,我們應(yīng)首先考慮利用橢圓的定義求解.2如何求橢圓的離心率1。由橢圓的定義求離心率例1以橢圓的焦距為直徑并過兩焦點的圓,交橢圓于4個不同的點,順次連接這四個點和兩個焦點恰好組成一個正六邊形,那么這個橢圓的離心率為________。解析如圖所示,設(shè)橢圓的方程為eq\f(x2,a2)+eq\f(y2,b2)=1(a>b〉0),半焦距為c,由題意知∠F1AF2=90°,∠AF2F1=60°?!啵麬F2|=c,|AF1|=2c·sin60°=eq\r(3)c。∴|AF1|+|AF2|=2a=(eq\r(3)+1)c?!鄀=eq\f(c,a)=eq\f(2,\r(3)+1)=eq\r(3)-1。答案eq\r(3)-1點評本題利用了圓及正六邊形的幾何性質(zhì),并結(jié)合橢圓的定義,化難為易,使問題簡單解決.2.解方程(組)求離心率例2橢圓eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)的左焦點為F1(-c,0),A(-a,0)、B(0,b)是兩個頂點,如果F1到直線AB的距離為eq\f(b,\r(7)),則橢圓的離心率e=________.解析如圖所示,直線AB的方程為eq\f(x,-a)+eq\f(y,b)=1,即bx-ay+ab=0?!唿cF1(-c,0)到直線AB的距離為eq\f(b,\r(7)),∴eq\f(b,\r(7))=eq\f(|-bc+ab|,\r(a2+b2)),∴eq\r(7)|a-c|=eq\r(a2+b2),即7a2-14ac+7c2=a2+b2.又∵b2=a2-c2,整理,得5a2-14ac+8兩邊同除以a2并由e=eq\f(c,a)知,8e2-14e+5=0,解得e=eq\f(1,2)或e=eq\f(5,4)(舍去).答案eq\f(1,2)3.利用數(shù)形結(jié)合求離心率例3在平面直角坐標系中,已知橢圓eq\f(x2,a2)+eq\f(y2,b2)=1(a〉b>0),圓O的半徑為a,過點Peq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a2,c),0))作圓O的兩條切線,且這兩條切線互相垂直,則離心率e=________.解析如圖所示,切線PA、PB互相垂直,PA=PB.又OA⊥PA,OB⊥PB,OA=OB,則四邊形OAPB是正方形,故OP=eq\r(2)OA,即eq\f(a2,c)=eq\r(2)a,∴e=eq\f(c,a)=eq\f(\r(2),2).答案eq\f(\r(2),2)4.綜合類例4設(shè)M為橢圓eq\f(x2,a2)+eq\f(y2,b2)=1上一點,F(xiàn)1、F2為橢圓的左、右焦點,如果∠MF1F2=75°,∠MF2F1=15°,求橢圓的離心率.解由正弦定理得eq\f(2c,sin90°)=eq\f(|MF1|,sin15°)=eq\f(|MF2|,sin75°)=eq\f(|MF1|+|MF2|,sin15°+sin75°)=eq\f(2a,sin15°+sin75°),∴e=eq\f(c,a)=eq\f(1,sin15°+cos15°)=eq\f(1,\r(2)sin60°)=eq\f(\r(6),3).點評此題可推廣為若∠MF1F2=α,∠MF2F1=β,則橢圓的離心率e=eq\f(cos\f(α+β,2),cos\f(α-β,2)).3活用雙曲線定義妙解題在解雙曲線中的有關(guān)求動點軌跡、離心率、最值等問題時,若能靈活應(yīng)用雙曲線的定義,能把大題化為小題,起到事半功倍的作用。下面舉例說明。1.求動點軌跡例1一動圓C與兩定圓C1:x2+(y-5)2=1和圓C2:x2+(y+5)2=16都外切,求動圓圓心C的軌跡方程。解設(shè)動圓圓心為C(x,y),半徑為r,因為動圓C與兩定圓相外切,所以eq\b\lc\{\rc\(\a\vs4\al\co1(|CC1|=r+1,,|CC2|=r+4,))即|CC2|-|CC1|=3〈|C1C2所以點C的軌跡是以C1(0,5),C2(0,-5)為焦點的雙曲線的上支,且a=eq\f(3,2),c=5,所以b2=eq\f(91,4).故動圓圓心C的軌跡方程為eq\f(4y2,9)-eq\f(4x2,91)=1(y≥eq\f(3,2))。點評依據(jù)動圓與兩定圓外切建立關(guān)系式,易得到|CC2|-|CC1|=3〈|C1C2|,從而判斷出C的軌跡是雙曲線的一支,最后求出a,b2.求焦點三角形的周長例2過雙曲線eq\f(x2,16)-eq\f(y2,9)=1左焦點F1的直線與左支交于A、B兩點,且弦AB長為6,則△ABF2(F2為右焦點)的周長是________。解析由雙曲線的定義知|AF2|-|AF1|=8,|BF2|-|BF1|=8,兩式相加得|AF2|+|BF2|-(|AF1|+|BF1|)=|AF2|+|BF2|-|AB|=16,從而有|AF2|+|BF2|=16+6=22,所以△ABF2的周長為|AF2|+|BF2|+|AB|=22+6=28。答案28點評與焦點有關(guān)的三角形周長問題,常借助雙曲線的定義解決,注意解決問題時的拼湊技巧.3.最值問題例3已知F是雙曲線eq\f(x2,3)-y2=1的右焦點,P是雙曲線右支上一動點,定點M(4,2),求|PM|+|PF|的最小值。解設(shè)雙曲線的左焦點為F′,則F′(-2,0),由雙曲線的定義知:|PF′|-|PF|=2a=2eq\r(3),所以|PF|=|PF′|-2eq\r(3),所以|PM|+|PF|=|PM|+|PF′|-2eq\r(3),要使|PM|+|PF|取得最小值,只需|PM|+|PF′|取得最小值,由圖可知,當P、F′、M三點共線時,|PM|+|PF′|最小,此時|MF′|=2eq\r(10),故|PM|+|PF|的最小值為2eq\r(10)-2eq\r(3)。點評本題利用雙曲線的定義對F的位置進行轉(zhuǎn)換,然后再根據(jù)共線易求得最小值.另外同學們不妨思考一下:(1)若將M坐標改為M(1,1),其他條件不變,如何求解呢?(2)若P是雙曲線左支上一動點,如何求解呢?4。求離心率范圍例4已知雙曲線eq\f(x2,a2)-eq\f(y2,b2)=1(a〉0,b〉0)的左、右焦點分別為F1、F2,點P在雙曲線的右支上,且|PF1|=4|PF2|,試求該雙曲線離心率的取值范圍.解因為|PF1|=4|PF2|,點P在雙曲線的右支上,所以設(shè)|PF2|=m,則|PF1|=4m由雙曲線的定義,則|PF1|-|PF2|=4m-m=2所以m=eq\f(2,3)a。又|PF1|+|PF2|≥|F1F2即4m+m≥2所以m≥eq\f(2,5)c,即eq\f(2,3)a≥eq\f(2,5)c,所以e=eq\f(c,a)≤eq\f(5,3)。又e>1,所以雙曲線離心率的取值范圍為1<e≤eq\f(5,3).點評本題利用雙曲線的定義及三角形的兩邊之和與第三邊之間的關(guān)系建立了關(guān)于雙曲線基本量a,c的不等關(guān)系,使問題得以巧妙地轉(zhuǎn)化、獲解.4拋物線的焦點弦例1如圖所示,AB是拋物線y2=2px(p>0)過焦點F的一條弦.設(shè)A(x1,y1)、B(x2,y2),AB的中點M(x0,y0),過A、M、B分別向拋物線的準線l作垂線,垂足分別為A1、M1、B1,則有以下重要結(jié)論:(1)以AB為直徑的圓必與準線相切;(2)|AB|=2(x0+eq\f(p,2))(焦點弦長與中點坐標的關(guān)系);(3)|AB|=x1+x2+p;(4)A、B兩點的橫坐標之積,縱坐標之積為定值,即x1x2=eq\f(p2,4),y1y2=-p2;(5)A1F⊥B1(6)A、O、B1三點共線;(7)eq\f(1,|FA|)+eq\f(1,|FB|)=eq\f(2,p)。以下以第(7)條結(jié)論為例證明:證明當直線AB的斜率不存在,即與x軸垂直時,|FA|=|FB|=p,∴eq\f(1,|FA|)+eq\f(1,|FB|)=eq\f(1,p)+eq\f(1,p)=eq\f(2,p)。當直線AB的斜率存在時,設(shè)直線AB的方程為y=keq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(p,2))),并代入y2=2px,∴eq\b\lc\(\rc\)(\a\vs4\al\co1(kx-\f(kp,2)))2=2px,即k2x2-p(2+k2)x+eq\f(k2p2,4)=0.設(shè)A(xA,yA),B(xB,yB),則xA+xB=eq\f(pk2+2,k2),xAxB=eq\f(p2,4).∵|FA|=xA+eq\f(p,2),|FB|=xB+eq\f(p,2),∴|FA|+|FB|=xA+xB+p,|FA|·|FB|=eq\b\lc\(\rc\)(\a\vs4\al\co1(xA+\f(p,2)))eq\b\lc\(\rc\)(\a\vs4\al\co1(xB+\f(p,2)))=xAxB+eq\f(p,2)(xA+xB)+eq\f(p2,4)=eq\f(p,2)(xA+xB+p).∴|FA|+|FB|=|FA|·|FB|·eq\f(2,p),即eq\f(1,|FA|)+eq\f(1,|FB|)=eq\f(2,p)。點評該結(jié)論是拋物線過焦點的弦所具有的一個重要性質(zhì),解題時,不可忽視AB⊥x軸的情況。例2設(shè)F為拋物線y2=4x的焦點,A,B,C為該拋物線上三點,若eq\o(FA,\s\up6(→))+eq\o(FB,\s\up6(→))+eq\o(FC,\s\up6(→))=0,則|eq\o(FA,\s\up6(→))|+|eq\o(FB,\s\up6(→))|+|eq\o(FC,\s\up6(→))|=________。解析設(shè)A(x1,y1)、B(x2,y2)、C(x3,y3),又F(1,0)。由eq\o(FA,\s\up6(→))+eq\o(FB,\s\up6(→))+eq\o(FC,\s\up6(→))=0知(x1-1)+(x2-1)+(x3-1)=0,即x1+x2+x3=3,|eq\o(FA,\s\up6(→))|+|eq\o(FB,\s\up6(→))|+|eq\o(FC,\s\up6(→))|=x1+x2+x3+eq\f(3,2)p=6。答案65求曲線方程的常用方法曲線方程的求法是解析幾何的重要內(nèi)容和高考的??键c。求曲線方程時,應(yīng)根據(jù)曲線的不同背景,不同的結(jié)構(gòu)特征,選用不同的思路和方法,才能簡捷明快地解決問題。下面對其求法進行探究.1.定義法求曲線方程時,如果動點軌跡滿足已知曲線的定義,則可根據(jù)題設(shè)條件和圖形的特點,恰當運用平面幾何的知識去尋求其數(shù)量關(guān)系,再由曲線定義直接寫出方程,這種方法叫做定義法.例1如圖,點A為圓形紙片內(nèi)不同于圓心C的定點,動點M在圓周上,將紙片折起,使點M與點A重合,設(shè)折痕m交線段CM于點N。現(xiàn)將圓形紙片放在平面直角坐標系xOy中,設(shè)圓C:(x+1)2+y2=4a2(a>1),A(1,0),記點N的軌跡為曲線E(1)證明曲線E是橢圓,并寫出當a=2時該橢圓的標準方程;(2)設(shè)直線l過點C和橢圓E的上頂點B,點A關(guān)于直線l的對稱點為點Q,若橢圓E的離心率e∈eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,2),\f(\r(3),2))),求點Q的縱坐標的取值范圍。解(1)依題意,直線m為線段AM的垂直平分線,∴|NA|=|NM|?!啵麼C|+|NA|=|NC|+|NM|=|CM|=2a∴N的軌跡是以C、A為焦點,長軸長為2a當a=2時,長軸長為2a=4,焦距為2∴b2=a2-c2=3?!鄼E圓的標準方程為eq\f(x2,4)+eq\f(y2,3)=1.(2)設(shè)橢圓的標準方程為eq\f(x2,a2)+eq\f(y2,b2)=1(a〉b>0)。由(1)知:a2-b2=1.又C(-1,0),B(0,b),∴直線l的方程為eq\f(x,-1)+eq\f(y,b)=1,即bx-y+b=0。設(shè)Q(x,y),∵點Q與點A(1,0)關(guān)于直線l對稱,∴eq\b\lc\{\rc\(\a\vs4\al\co1(\f(y,x-1)·b=-1,,b·\f(x+1,2)-\f(y,2)+b=0,))消去x得y=eq\f(4b,b2+1)?!唠x心率e∈eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,2),\f(\r(3),2))),∴eq\f(1,4)≤e2≤eq\f(3,4),即eq\f(1,4)≤eq\f(1,a2)≤eq\f(3,4),∴eq\f(4,3)≤a2≤4.∴eq\f(4,3)≤b2+1≤4,即eq\f(\r(3),3)≤b≤eq\r(3),∵y=eq\f(4b,b2+1)=eq\f(4,b+\f(1,b))≤2,當且僅當b=1時取等號。又當b=eq\r(3)時,y=eq\r(3);當b=eq\f(\r(3),3)時,y=eq\r(3)?!鄀q\r(3)≤y≤2.∴點Q的縱坐標的取值范圍是[eq\r(3),2]。2。直接法若題設(shè)條件有明顯的等量關(guān)系,或者可運用平面幾何的知識推導出等量關(guān)系,則可通過“建系、設(shè)點、列式、化簡、檢驗"五個步驟直接求出動點的軌跡方程,這種“五步法”可稱為直接法。例2已知直線l1:2x-3y+2=0,l2:3x-2y+3=0。有一動圓M(圓心和半徑都在變動)與l1,l2都相交,并且l1,l2被截在圓內(nèi)的兩條線段的長度分別是定值26,24。求圓心M的軌跡方程。解如圖,設(shè)M(x,y),圓半徑為r,M到l1,l2的距離分別是d1,d2,則deq\o\al(2,1)+132=r2,deq\o\al(2,2)+122=r2,∴deq\o\al(2,2)-deq\o\al(2,1)=25,即eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3x-2y+3,\r(13))))2-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2x-3y+2,\r(13))))2=25,化簡得圓心M的軌跡方程是(x+1)2-y2=65。點評若動點運動的規(guī)律是一些幾何量的等量關(guān)系,則常用直接法求解,即將這些關(guān)系直接轉(zhuǎn)化成含有動點坐標x,y的方程即可.3.待定系數(shù)法若已知曲線(軌跡)的形狀,求曲線(軌跡)的方程時,可由待定系數(shù)法求解.例3已知橢圓的對稱軸為坐標軸,O為坐標原點,F(xiàn)是一個焦點,A是一個頂點,若橢圓的長軸長是6,且cos∠OFA=eq\f(2,3),求橢圓的方程。解橢圓的長軸長為6,cos∠OFA=eq\f(2,3),所以點A不是長軸的頂點,是短軸的頂點,所以|OF|=c,|AF|=eq\r(|OA|2+|OF|2)=eq\r(b2+c2)=a=3,eq\f(c,3)=eq\f(2,3),所以c=2,b2=32-22=5,故橢圓的方程為eq\f(x2,9)+eq\f(y2,5)=1或eq\f(x2,5)+eq\f(y2,9)=1。4.相關(guān)點法(或代入法)如果點P的運動軌跡或所在的曲線已知,又點P與點Q的坐標之間可以建立某種關(guān)系,借助于點P的運動軌跡便可得到點Q的運動軌跡。例4如圖所示,從雙曲線x2-y2=1上一點Q引直線l:x+y=2的垂線,垂足為N,求線段QN的中點P的軌跡方程。分析設(shè)P(x,y),因為P是QN的中點,為此需用P點的坐標表示Q點的坐標,然后代入雙曲線方程即可。解設(shè)P點坐標為(x,y),雙曲線上點Q的坐標為(x0,y0),∵點P是線段QN的中點,∴N點的坐標為(2x-x0,2y-y0)。又點N在直線x+y=2上,∴2x-x0+2y-y0=2,即x0+y0=2x+2y-2. ①又QN⊥l,∴kQN=eq\f(2y-2y0,2x-2x0)=1,即x0-y0=x-y. ②由①②,得x0=eq\f(1,2)(3x+y-2),y0=eq\f(1,2)(x+3y-2).又∵點Q在雙曲線上,∴eq\f(1,4)(3x+y-2)2-eq\f(1,4)(x+3y-2)2=1.化簡,得eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(1,2)))2-eq\b\lc\(\rc\)(\a\vs4\al\co1(y-\f(1,2)))2=eq\f(1,2).∴線段QN的中點P的軌跡方程為eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(1,2)))2-eq\b\lc\(\rc\)(\a\vs4\al\co1(y-\f(1,2)))2=eq\f(1,2).點評本題中動點P與點Q相關(guān),而Q點的軌跡確定,所以解決這類問題的關(guān)鍵是找出P、Q兩點坐標間的關(guān)系,用相關(guān)點法求解.5.參數(shù)法有時求動點滿足的幾何條件不易得出,也無明顯的相關(guān)點,但卻較易發(fā)現(xiàn)(或經(jīng)分析可發(fā)現(xiàn))這個動點的運動常常受到另一個變量(角度、斜率、比值、截距或時間等)的制約,即動點的坐標(x,y)中的x,y分別隨另一個變量的變化而變化,我們可以設(shè)這個變量為參數(shù),建立軌跡的參數(shù)方程,這種方法叫做參數(shù)法.例5已知點P在直線x=2上移動,直線l通過原點且與OP垂直,通過點A(1,0)及點P的直線m和直線l交于點Q,求點Q的軌跡方程.解如圖,設(shè)OP的斜率為k,則P(2,2k)。當k≠0時,直線l的方程:y=-eq\f(1,k)x; ①直線m的方程:y=2k(x-1)。 ②聯(lián)立①②消去k得2x2+y2-2x=0(x≠1).當k=0時,點Q的坐標(0,0)也滿足上式,故點Q的軌跡方程為2x2+y2-2x=0(x≠1).6解析幾何中的定值與最值問題1.定點、定值問題對于解析幾何中的定點、定值問題,要善于運用辯證的觀點去思考分析,在動點的“變”中尋求定值的“不變"性,用特殊探索法(特殊值、特殊位置、特殊圖形等)先確定出定值,揭開神秘的面紗,這樣可將盲目的探索問題轉(zhuǎn)化為有方向有目標的一般性證明題,從而找到解決問題的突破口。例1已知橢圓的中心為坐標原點O,焦點在x軸上,斜率為1且過橢圓右焦點的直線交橢圓于A,B兩點,eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))與a=(3,-1)共線.設(shè)M為橢圓上任意一點,且eq\o(OM,\s\up6(→))=λeq\o(OA,\s\up6(→))+μeq\o(OB,\s\up6(→))(λ,μ∈R),求證:λ2+μ2為定值。證明∵M是橢圓上任意一點,若M與A重合,則eq\o(OM,\s\up6(→))=eq\o(OA,\s\up6(→)),此時λ=1,μ=0,∴λ2+μ2=1,現(xiàn)在需要證明λ2+μ2為定值1.設(shè)橢圓方程為eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0),A(x1,y1),B(x2,y2),AB的中點為N(x0,y0),∴eq\b\lc\{\rc\(\a\vs4\al\co1(\f(x\o\al(2,1),a2)+\f(y\o\al(2,1),b2)=1,①,\f(x\o\al(2,2),a2)+\f(y\o\al(2,2),b2)=1,②))①-②得eq\f(x1-x2x1+x2,a2)+eq\f(y1-y2y1+y2,b2)=0,即eq\f(y1-y2,x1-x2)=-eq\f(b2x1+x2,a2y1+y2)=-eq\f(b2x0,a2y0),又∵kAB=eq\f(y1-y2,x1-x2)=1,∴y0=-eq\f(b2,a2)x0?!嘀本€ON的方向向量為eq\o(ON,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(1,-\f(b2,a2))),∵eq\o(ON,\s\up6(→))∥a,∴eq\f(1,3)=eq\f(b2,a2)?!遖2=3b2,∴橢圓方程為x2+3y2=3b2,又直線方程為y=x-c。聯(lián)立eq\b\lc\{\rc\(\a\vs4\al\co1(y=x-c,,x2+3y2=3b2,))得4x2-6cx+3c2-3b2=0。∵x1+x2=eq\f(3,2)c,x1x2=eq\f(3c2-3b2,4)=eq\f(3,8)c2。又設(shè)M(x,y),則由eq\o(OM,\s\up6(→))=λeq\o(OA,\s\up6(→))+μeq\o(OB,\s\up6(→)),得eq\b\lc\{\rc\(\a\vs4\al\co1(x=λx1+μx2,,y=λy1+μy2,))代入橢圓方程整理得λ2(xeq\o\al(2,1)+3yeq\o\al(2,1))+μ2(xeq\o\al(2,2)+3yeq\o\al(2,2))+2λμ(x1x2+3y1y2)=3b2。又∵xeq\o\al(2,1)+3yeq\o\al(2,1)=3b2,xeq\o\al(2,2)+3yeq\o\al(2,2)=3b2,x1x2+3y1y2=4x1x2-3c(x1+x2)+3c2=eq\f(3,2)c2-eq\f(9,2)c2+3c2=0,∴λ2+μ2=1,故λ2+μ2為定值。例2已知橢圓eq\f(x2,a2)+eq\f(y2,b2)=1(a〉0,b>0)過點(0,1),其長軸、焦距和短軸的長的平方依次成等差數(shù)列.直線l與x軸正半軸和y軸分別交于Q、P,與橢圓分別交于點M、N,各點均不重合且滿足eq\o(PM,\s\up6(→))=λ1eq\o(MQ,\s\up6(→)),eq\o(PN,\s\up6(→))=λ2eq\o(NQ,\s\up6(→))。(1)求橢圓的標準方程;(2)若λ1+λ2=-3,試證明:直線l過定點并求此定點.解(1)設(shè)橢圓的焦距為2c由題意知b=1,且(2a)2+(2b)2=2(2c)又a2=b2+c2,∴a2=3?!鄼E圓的方程為eq\f(x2,3)+y2=1。(2)由題意設(shè)P(0,m),Q(x0,0),M(x1,y1),N(x2,y2),設(shè)l方程為x=t(y-m),由eq\o(PM,\s\up6(→))=λ1eq\o(MQ,\s\up6(→))知(x1,y1-m)=λ1(x0-x1,-y1),∴y1-m=-y1λ1,由題意y1≠0,∴λ1=eq\f(m,y1)-1。同理由eq\o(PN,\s\up6(→))=λ2eq\o(NQ,\s\up6(→))知λ2=eq\f(m,y2)-1.∵λ1+λ2=-3,∴y1y2+m(y1+y2)=0, ①聯(lián)立eq\b\lc\{\rc\(\a\vs4\al\co1(x2+3y2=3,,x=ty-m))得(t2+3)y2-2mt2y+t2m2-3=0,∴由題意知Δ=4m2t4-4(t2+3)(t2m2-3)>0, ②且有y1+y2=eq\f(2mt2,t2+3),y1y2=eq\f(t2m2-3,t2+3), ③③代入①得t2m2-3+2m2t2=0,∴(mt)2=1,由題意mt〈0,∴mt=-1,滿足②,得l方程為x=ty+1,過定點(1,0),即Q為定點.2。最值問題解決圓錐曲線中的最值問題,一般有兩種方法:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來解非常巧妙;二是代數(shù)法,將圓錐曲線中的最值問題轉(zhuǎn)化為函數(shù)問題(即根據(jù)條件列出所求的目標函數(shù)),然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角有界法、函數(shù)單調(diào)法及基本不等式法等,求解最大或最小值。例3已知F是雙曲線eq\f(x2,4)-eq\f(y2,12)=1的左焦點,A(1,4),P是雙曲線右支上的動點,則|PF|+|PA|的最小值為________.解析設(shè)右焦點為F′,由題意可知F′坐標為(4,0),根據(jù)雙曲線的定義,|PF|-|PF′|=4,∴|PF|+|PA|=4+|PF′|+|PA|,∴要使|PF|+|PA|最小,只需|PF′|+|PA|最小即可,|PF′|+|PA|最小需P、F′、A三點共線,最小值即4+|F′A|=4+eq\r(9+16)=4+5=9。答案9點評“化曲為直"求與距離有關(guān)的最值是平面幾何中一種巧妙的方法,特別是涉及圓錐曲線上動點與定點和焦點距離之和的最值問題常用此法。例4已知平面內(nèi)一動點P到點F(1,0)的距離與點P到y(tǒng)軸的距離的差等于1。過點F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與軌跡C相交于點A,B,l2與軌跡C相交于點D,E,求eq\o(AD,\s\up6(→))·eq\o(EB,\s\up6(→))的最小值。解設(shè)動點P的坐標為(x,y),由題意有eq\r(x-12+y2)-|x|=1.化簡得y2=2x+2|x|。當x≥0時,y2=4x;當x〈0時,y=0.所以,動點P的軌跡C的方程為y2=4x(x≥0)和y=0(x〈0)。如圖,由題意知,直線l1的斜率存在且不為0,設(shè)為k,則l1的方程為y=k(x-1)。由eq\b\lc\{\rc\(\a\vs4\al\co1(y=kx-1,,y2=4x))得k2x2-(2k2+4)x+k2=0.設(shè)A(x1,y1),B(x2,y2),則x1,x2是上述方程的兩個實根,于是x1+x2=2+eq\f(4,k2),x1x2=1。因為l1⊥l2,所以l2的斜率為-eq\f(1,k).設(shè)D(x3,y3),E(x4,y4),則同理可得x3+x4=2+4k2,x3x4=1。故eq\o(AD,\s\up6(→))·eq\o(EB,\s\up6(→))=(eq\o(AF,\s\up6(→))+eq\o(FD,\s\up6(→)))·(eq\o(EF,\s\up6(→))+eq\o(FB,\s\up6(→)))=eq\o(AF,\s\up6(→))·eq\o(EF,\s\up6(→))+eq\o(AF,\s\up6(→))·eq\o(FB,\s\up6(→))+eq\o(FD,\s\up6(→))·eq\o(EF,\s\up6(→))+eq\o(FD,\s\up6(→))·eq\o(FB,\s\up6(→))=|eq\o(AF,\s\up6(→))|·|eq\o(FB,\s\up6(→))|+|eq\o(FD,\s\up6(→))|·|eq\o(EF,\s\up6(→))|=(x1+1)(x2+1)+(x3+1)(x4+1)=x1x2+(x1+x2)+1+x3x4+(x3+x4)+1=1+eq\b\lc\(\rc\)(\a\vs4\al\co1(2+\f(4,k2)))+1+1+(2+4k2)+1=8+4eq\b\lc\(\rc\)(\a\vs4\al\co1(k2+\f(1,k2)))≥8+4×2eq\r(k2·\f(1,k2))=16.當且僅當k2=eq\f(1,k2),即k=±1時,eq\o(AD,\s\up6(→))·eq\o(EB,\s\up6(→))取得最小值16.7圓錐曲線中存在探索型問題存在探索型問題作為探索性問題之一,具備了內(nèi)容涉及面廣、重點題型豐富等命題要求,方便考查分析、比較、猜測、歸納等綜合能力,因而受到命題人的喜愛。圓錐曲線存在探索型問題是指在給定題設(shè)條件下是否存在某個數(shù)學對象(數(shù)值、性質(zhì)、圖形)使某個數(shù)學結(jié)論成立的數(shù)學問題。本節(jié)僅就圓錐曲線中的存在探索型問題展開,幫助復習。1。常數(shù)存在型問題例1直線y=ax+1與雙曲線3x2-y2=1相交于A,B兩點,是否存在這樣的實數(shù)a,使A,B關(guān)于直線y=2x對稱?請說明理由。分析先假設(shè)實數(shù)a存在,然后根據(jù)推理或計算求出滿足題意的結(jié)果,或得到與假設(shè)相矛盾的結(jié)果,從而否定假設(shè),得出某數(shù)學對象不存在的結(jié)論.解設(shè)存在實數(shù)a,使A,B關(guān)于直線l:y=2x對稱,并設(shè)A(x1,y1),B(x2,y2),則AB中點坐標為eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2,2),\f(y1+y2,2))).依題設(shè)有eq\f(y1+y2,2)=2·eq\f(x1+x2,2),即y1+y2=2(x1+x2), ①又A,B在直線y=ax+1上,∴y1=ax1+1,y2=ax2+1,∴y1+y2=a(x1+x2)+2, ②由①②,得2(x1+x2)=a(x1+x2)+2,即(2-a)(x1+x2)=2, ③聯(lián)立eq\b\lc\{\rc\(\a\vs4\al\co1(y=ax+1,,3x2-y2=1))得(3-a2)x2-2ax-2=0,∴x1+x2=eq\f(2a,3-a2), ④把④代入③,得(2-a)·eq\f(2a,3-a2)=2,解得a=eq\f(3,2),經(jīng)檢驗符合題意,∴kAB=eq\f(3,2),而kl=2,∴kAB·kl=eq\f(3,2)×2=3≠-1。故不存在滿足題意的實數(shù)a.2.點存在型問題例2在平面直角坐標系中,已知圓心在第二象限,半徑為2eq\r(2)的圓與直線y=x相切于原點O,橢圓eq\f(x2,a2)+eq\f(y2,9)=1與圓C的一個交點到橢圓兩焦點的距離之和為10。(1)求圓C的方程;(2)試探究圓C上是否存在異于原點的點Q,使Q到橢圓右焦點F的距離等于線段OF的長。若存在,請求出點Q的坐標;若不存在,請說明理由。分析假設(shè)滿足條件的點Q存在,根據(jù)其滿足的幾何性質(zhì),求出Q的坐標,則點Q存在,若求不出Q的坐標,則點Q就不存在.解(1)由題意知圓心在y=-x上,設(shè)圓心的坐標是(-p,p)(p>0),則圓的方程可設(shè)為(x+p)2+(y-p)2=8,由于O(0,0)在圓上,∴p2+p2=8,解得p=2,∴圓C的方程為(x+2)2+(y-2)2=8。(2)橢圓eq\f(x2,a2)+eq\f(y2,9)=1與圓C的一個交點到橢圓兩焦點的距離之和為10,由橢圓的定義知2a=10,a=5,∴橢圓右焦點為F(4,0)。假設(shè)存在異于原點的點Q(m,n)使|QF|=|OF|,則有eq\b\lc\{\rc\(\a\vs4\al\co1(m+22+n-22=8,,m-42+n2=16))且m2+n2≠0,解得eq\b\lc\{\rc\(\a\vs4\al\co1(m=\f(4,5),,n=\f(12,5),))故圓C上存在滿足條件的點Qeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,5),\f(12,5)))。3。直線存在型問題例3試問是否能找到一條斜率為k(k≠0)的直線l與橢圓eq\f(x2,3)+y2=1交于兩個不同的點M,N,且使M,N到點A(0,1)的距離相等,若存在,試求出k的取值范圍;若不存在,請說明理由。分析假設(shè)滿足條件的直線l存在,由平面解析幾何的相關(guān)知識求解.解設(shè)直線l:y=kx+m為滿足條件的直線,再設(shè)P為MN的中點,欲滿足條件,只要AP⊥MN即可.由eq\b\lc\{\rc\(\a\vs4\al\co1(y=kx+m,,\f(x2,3)+y2=1,))得(1+3k2)x2+6mkx+3m2-3=0。設(shè)M(x1,y1),N(x2,y2),則xP=eq\f(x1+x2,2)=-eq\f(3mk,1+3k2),yP=kxP+m=eq\f(m,1+3k2),∴kAP=eq\f(3k2-m+1,3mk)?!逜P⊥MN,∴eq\f(3k2-m+1,3mk)=-eq\f(1,k)(k≠0),故m=-eq\f(3k2+1,2).由Δ=36m2k2-4(1+3k2)(3m2-3)=9(1+3k2)(1-k2)>0,得-1〈k〈1,且k≠0。故當k∈(-1,0)∪(0,1)時,存在滿足條件的直線l.8圓錐曲線中的易錯點剖析1。求軌跡方程時,動點坐標設(shè)法不當而致誤例1長為a的線段AB,兩端點分別在兩坐標軸上移動,求線段AB中點P的軌跡方程.錯解如圖所示,設(shè)A(0,y),B(x,0).由中點坐標公式可得P點坐標為eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x,2),\f(y,2))),連接OP,由直角三角形斜邊上的中線性質(zhì)有|OP|=eq\f(1,2)|AB|=eq\f(1,2)a。故eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x,2)))2+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(y,2)))2=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a,2)))2,即所求的軌跡方程為x2+y2=a2.錯因分析求軌跡方程,即求軌跡上任意一點的坐標所滿足的方程,并檢驗以方程的解為坐標的點是否都是軌跡上的點,因此,應(yīng)設(shè)軌跡上任意一點的坐標為x,y.上述解法是因為動點坐標設(shè)的不對,即運用方法不當而導致錯誤.正解設(shè)中點P(x,y),A(0,m),B(n,0),則m2+n2=a2,x=eq\f(n,2),y=eq\f(m,2),于是所求軌跡方程為x2+y2=eq\f(1,4)a2.2.忽視定義中的條件而致誤例2平面內(nèi)一點M到兩定點F1(0,-4),F2(0,4)的距離之和為8,則點M的軌跡為()A.橢圓B。圓C。直線D.線段錯解根據(jù)橢圓的定義,點M的軌跡為橢圓,故選A.錯因分析在橢圓的定義中,點M到兩定點F1,F(xiàn)2的距離之和必須大于兩定點的距離,即|MF1|+|MF2|>|F1F2|,亦即2a>2c.而本題中|MF1|+|MF2|=|F1F2|,所以點M的軌跡不是橢圓,而是線段F1F2。正解因為點M到兩定點F1,F(xiàn)2的距離之和為|F1F2|,所以點M的軌跡是線段F1F2。答案D3.忽視標準方程的特征而致誤例3設(shè)拋物線y=mx2(m≠0)的準線與直線y=1的距離為3,求拋物線的標準方程.錯解拋物線y=mx2(m≠0)的準線方程為y=-eq\f(m,4).又與直線y=1的距離為3的直線為y=-2或y=4.故-eq\f(m,4)=-2或-eq\f(m,4)=4.∴m=8或m=-16。所以拋物線的標準方程為y=8x2或y=-16x2。錯因分析錯解忽視了拋物線標準方程中的系數(shù),應(yīng)位于一次項前這個特征,故本題應(yīng)先化為x2=eq\f(1,m)y的形式,再求解.正解由于y=mx2(m≠0)可化為x2=eq\f(1,m)y,其準線方程為y=-eq\f(1,4m).由題意知-eq\f(1,4m)=-2或-eq\f(1,4m)=4,解得m=eq\f(1,8)或m=-eq\f(1,16)。則所求拋物線的標準方程為x2=8y或x2=-16y.4.涉及弦長問題時,忽視判別式Δ>0這一隱含條件而致誤例4正方形ABCD的A,B兩點在拋物線y=x2上,另兩點C,D在直線y=x-4上,求正方形的邊長。錯解∵AB與直線y=x-4平行,∴設(shè)AB的直線方程為y=x+b,A(x1,xeq\o\al(2,1)),B(x2,xeq\o\al(2,2)),則由eq\b\lc\{\rc\(\a\vs4\al\co1(y=x+b,,y=x2))?x2-x-b=0,|AB|2=(1+k2)[(x1+x2)2-4x1x2]=2(1+4b).∵AB與直線y=x-4間的距離為d=eq\f(|b+4|,\r(2)),∴2(1+4b)=eq\f(b+42,2),即b2-8b+12=0,解得b=2或b=6,∴|AB|=3eq\r(2)或|AB|=5eq\r(2)。錯因分析在考慮直線AB與拋物線相交時,必須有方程x2-x-b=0的判別式Δ>0,以此來限制b的取舍.正解∵AB與直線y=x-4平行,∴設(shè)AB的直線方程為y=x+b,A(x1,xeq\o\al(2,1)),B(x2,xeq\o\al(2,2)),則由eq\b\lc\{\rc\(\a\vs4\al\co1(y=x+b,,y=x2))?x2-x-b=0,|AB|2=(1+k2)[(x1+x2)2-4x1x2]=2(1+4b).∵AB與直線y=x-4間的距離為d=eq\f(|b+4|,\r(2)),∴2(1+4b)=eq\f(b+42,2),即b2-8b+12=0,解得b=2或b=6,∵Δ=1+4b〉0,∴b>-eq\f(1,4).∴b=2或b=6都滿足Δ〉0,∴b=2或b=6?!啵麬B|=3eq\r(2)或|AB|=5eq\r(2)。5。求解拋物線標準方程時,忽略對焦點位置討論致誤例5拋物線的焦點F在x軸上,點A(m,-3)在拋物線上,且|AF|=5,求拋物線的標準方程。錯解一因為拋物線的焦點F在x軸上,且點A(m,-3)在拋物線上,所以拋物線方程可設(shè)為y2=2px(p>0).設(shè)點A到準線的距離為d,則d=|AF|=eq\f(p,2)+m,所以eq\b\lc\{\rc\(\a\vs4\al\co1(-32=2pm,,\f(p,2)+m=5,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(p=1,,m=\f(9,2)))或eq\b\lc\{\rc\(\a\vs4\al\co1(p=9,,m=\f(1,2)。))所以拋物線方程為y2=2x或y2=18x。錯解二因為拋物線的焦點F在x軸上,且點A(m,-3)在拋物線上,所以當m>0時,點A在第四象限,拋物線方程可設(shè)為y2=2px(p〉0).設(shè)點A到準線的距離為d,則d=|AF|=eq\f(p,2)+m,所以eq\b\lc\{\rc\(\a\vs4\al\co1(-32=2pm,,\f(p,2)+m=5,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(p=1,,m=\f(9,2)))或eq\b\lc\{\rc\(\a\vs4\al\co1(p=9,,m=\f(1,2)。))所以拋物線方程為y2=2x或y2=18x。當m<0時,點A在第三象限,拋物線方程可設(shè)為y2=-2px(p〉0),設(shè)點A到準線的距離為d,則d=|AF|=eq\f(p,2)+m,所以eq\b\lc\{\rc\(\a\vs4\al\co1(-32=-2pm,,\f(p,2)+m=5,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(p=5+\r(34),,m=\f(5-\r(34),2)))或eq\b\lc\{\rc\(\a\vs4\al\co1(p=5-\r(34),,m=\f(5+\r(34),2)))(舍去)。所以拋物線方程為y2=-2(5+eq\r(34))x。綜上所述,拋物線方程為y2=-2(5+eq\r(34))x或y2=2x或y2=18x。eq\x(錯因分析當拋物線的焦點位置無法確定時,需分類討論.)正解因為拋物線的焦點F在x軸上,且點A(m,-3)在拋物線上,所以當m〉0時,點A在第四象限,拋物線方程可設(shè)為y2=2px(p〉0),設(shè)點A到準線的距離為d,則d=|AF|=eq\f(p,2)+m,所以eq\b\lc\{\rc\(\a\vs4\al\co1(-32=2pm,,\f(p,2)+m=5,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(p=1,,m=\f(p,2)))或eq\b\lc\{\rc\(\a\vs4\al\co1(p=9,,m=\f(1,2),))所以拋物線方程為y2=2x或y2=18x。當m<0時,點A在第三象限,拋物線的方程可設(shè)為y2=-2px(p〉0),設(shè)A到準線的距離為d,則d=|AF|=eq\f(p,2)-m,所以eq\b\lc\{\rc\(\a\vs4\al\co1(-32=-2pm,,\f(p,2)-m=5,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(p=1,,m=-\f(9,2)))或eq\b\lc\{\rc\(\a\vs4\al\co1(p=9,,m=-\f(1,2).))所以拋物線方程為y2=-2x或y2=-18x。綜上所述,拋物線方程為y2=-2x或y2=-18x或y2=2x或y2=18x。9圓錐曲線中的數(shù)學思想方法1.方程思想方程思想就是分析數(shù)學問題中變量間的等量關(guān)系,建立方程或方程組,或者構(gòu)造方程,通過解方程或解方程組,或者運用方程的性質(zhì)去分析、轉(zhuǎn)化問題,使問題獲得解決。本章中,方程思想的應(yīng)用最為廣泛。例1已知直線y=-eq\f(1,2)x+2和橢圓eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)相交于A,B兩點,且a=2b,若|AB|=2eq\r(5),求橢圓的方程.解由eq\b\lc\{\rc\(\a\vs4\al\co1(y=-\f(1,2)x+2,,\f(x2,4b2)+\f(y2,b2)=1))消去y并整理得x2-4x+8-2b2=0。設(shè)A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系得x1+x2=4,x1x2=8-2b2?!撸麬B|=2eq\r(5),∴eq\r(1+\f(1,4))·eq\r(x1+x22-4x1x2)=2eq\r(5),即eq\f(\r(5),2)·eq\r(16-48-2b2)=2eq\r(5),解得b2=4,故a2=4b2=16?!嗨髾E圓的方程為eq\f(x2,16)+eq\f(y2,4)=1.2。函數(shù)思想很多與圓錐曲線有關(guān)的問題中的各個數(shù)量在運動變化時,都是相互聯(lián)系、相互制約的,它們之間構(gòu)成函數(shù)關(guān)系.這類問題若用函數(shù)思想來分析、尋找解題思路,會有很好的效果.一些最值問題常用函數(shù)思想,運用根與系數(shù)的關(guān)系求弦的中點和弦長問題,是經(jīng)常使用的方法.例2若點(x,y)在eq\f(x2,4)+eq\f(y2,b2)=1(b
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國動態(tài)圖像分析儀行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國自動粉末噴涂系統(tǒng)行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球可生物降解微膠囊解決方案行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球生物分析測試行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國高壓清洗機噴槍行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 幼兒園科學討論活動概述模塊二幼兒園科學探究活動講解
- 必殺08 第九、十單元 西半球的國家和極地地區(qū)(綜合題20題)(解析版)
- 猜想02 重難點(70道題25個重難點)【考題猜想】(解析版)
- 2025我國合同法對合同效力的規(guī)定
- 合法的房屋租賃合同
- 消防維保服務(wù)方案及實施細則
- 保衛(wèi)管理員培訓課件
- 香港朗文4B單詞及句子
- 數(shù)據(jù)中心運維方案
- 小龍蝦啤酒音樂節(jié)活動策劃方案課件
- 運動技能學習與控制課件第五章運動中的中樞控制
- 財務(wù)部規(guī)范化管理 流程圖
- 蘇教版2023年小學四年級數(shù)學下冊教學計劃+教學進度表
- 斷絕關(guān)系協(xié)議書范文參考(5篇)
- 量子力學課件1-2章-波函數(shù)-定態(tài)薛定諤方程
- 最新變態(tài)心理學課件
評論
0/150
提交評論