版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.用配方法解方程,方程應(yīng)變形為()A. B. C. D.2.已知⊙O的半徑是4,圓心O到直線l的距離d=1.則直線l與⊙O的位置關(guān)系是()A.相離 B.相切 C.相交 D.無法判斷3.如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的一個交點(diǎn)坐標(biāo)是(3,0),對稱軸為直線x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a﹣2b+c>0;④當(dāng)y>0時,﹣1<x<3;⑤b<c.其中正確的個數(shù)是()A.2 B.3 C.4 D.54.從口袋中隨機(jī)摸出一球,再放回口袋中,不斷重復(fù)上述過程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10個和若干個白球,由此估計口袋中大約有多少個白球()A.10個 B.20個 C.30個 D.無法確定5.如圖,線段AB兩個端點(diǎn)的坐標(biāo)分別為A(6,6),B(8,2),以原點(diǎn)O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,則端點(diǎn)C的坐標(biāo)為()A.(3,3) B.(4,3) C.(3,1) D.(4,1)6.若,面積之比為,則相似比為()A. B. C. D.7.一元二次方程的解是()A.或 B. C. D.8.剪紙是中國特有的民間藝術(shù).在如圖所示的四個剪紙圖案中.既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.9.一次函數(shù)與二次函數(shù)在同一平面直角坐標(biāo)系中的圖像可能是()A. B. C. D.10.已知a、b滿足a2﹣6a+2=0,b2﹣6b+2=0,則=()A.﹣6 B.2 C.16 D.16或2二、填空題(每小題3分,共24分)11.如圖,在矩形中,是邊的中點(diǎn),連接交對角線于點(diǎn),若,,則的長為________.12.如圖,⊙O是△ABC的外接圓,∠A=60°,BC=6,則⊙O的半徑是_____.13.將直角邊長為5cm的等腰直角△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)15°后,得到△AB′C′,則圖中陰影部分的面積是_____cm1.14.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),AB為半圓的直徑,拋物線的解析式為y=x2﹣2x﹣3,求這個“果圓”被y軸截得的線段CD的長.15.如圖,在⊙O的內(nèi)接四邊形ABCD中,∠A=70°,∠OBC=60°,則∠ODC=__________.16.如圖,在中,、分別是、的中點(diǎn),點(diǎn)在上,是的平分線,若,則的度數(shù)是________.17.在一個不透明的布袋中,有紅球、白球共30個,除顏色外其它完全相同,小明通過多次摸球試驗(yàn)后發(fā)現(xiàn),其中摸到紅球的頻率穩(wěn)定在40%,則隨機(jī)從口袋中摸出一個是紅球的概率是_____.18.如圖,在Rt△ABC中,∠BAC=90°,AB=1,tanC=,以點(diǎn)A為圓心,AB長為半徑作弧交AC于D,分別以B、D為圓心,以大于BD長為半徑作弧,兩弧交于點(diǎn)E,射線AE與BC于F,過點(diǎn)F作FG⊥AC于G,則FG的長為______.三、解答題(共66分)19.(10分)如圖,菱形ABCD中,∠B=60°,AB=3cm,過點(diǎn)A作∠EAF=60°,分別交DC,BC的延長線于點(diǎn)E,F(xiàn),連接EF.(1)如圖1,當(dāng)CE=CF時,判斷△AEF的形狀,并說明理由;(2)若△AEF是直角三角形,求CE,CF的長度;(3)當(dāng)CE,CF的長度發(fā)生變化時,△CEF的面積是否會發(fā)生變化,請說明理由.20.(6分)用圓規(guī)、直尺作圖,不寫作法,但要保留作圖痕跡.如圖,“幸?!毙^(qū)為了方便住在A區(qū)、B區(qū)、和C區(qū)的居民(A區(qū)、B區(qū)、和C區(qū)之間均有小路連接),要在小區(qū)內(nèi)設(shè)立物業(yè)管理處P.如果想使這個物業(yè)管理處P到A區(qū)、B區(qū)、和C區(qū)的距離相等,應(yīng)將它建在什么位置?請在圖中作出點(diǎn)P.21.(6分)某地要建造一個圓形噴水池,在水池中央垂直于水面安裝一個柱子,點(diǎn)恰好在水面中心,安裝在柱子頂端處的圓形噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下,且在過的任意平面上,水流噴出的高度與水平距離之間的關(guān)系如圖所示,建立平面直角坐標(biāo)系,右邊拋物線的關(guān)系式為.請完成下列問題:(1)將化為的形式,并寫出噴出的水流距水平面的最大高度是多少米;(2)寫出左邊那條拋物線的表達(dá)式;(3)不計其他因素,若要使噴出的水流落在池內(nèi),水池的直徑至少要多少米?22.(8分)碼頭工人每天往一艘輪船上裝載貨物,裝載速度(噸/天)與裝完貨物所需時間(天)之間的函數(shù)關(guān)系如圖.(1)求與之間的函數(shù)表達(dá)式,并寫出自變量的取值范圍;(2)由于遇到緊急情況,要求船上的貨物不超過5天卸貨完畢,那么平均每天至少要卸多少噸貨物?23.(8分)為了了解全校1500名學(xué)生對學(xué)校設(shè)置的籃球、羽毛球、乒乓球、踢毽子、跳繩共5項(xiàng)體育活動的喜愛情況,在全校范圍內(nèi)隨機(jī)抽查部分學(xué)生,對他們喜愛的體育項(xiàng)目(每人只選一項(xiàng))進(jìn)行了問卷調(diào)查,將統(tǒng)計數(shù)據(jù)繪制成如圖兩幅不完整統(tǒng)計圖,請根據(jù)圖中提供的信息解答下列各題.(1)m=%,這次共抽取了名學(xué)生進(jìn)行調(diào)查;并補(bǔ)全條形圖;(2)請你估計該校約有名學(xué)生喜愛打籃球;(3)現(xiàn)學(xué)校準(zhǔn)備從喜歡跳繩活動的4人(三男一女)中隨機(jī)選取2人進(jìn)行體能測試,請利用列表或畫樹狀圖的方法,求抽到一男一女學(xué)生的概率是多少?24.(8分)如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B(3,b)兩點(diǎn).(1)求反比例函數(shù)的表達(dá)式(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)(3)求△PAB的面積.25.(10分)計算:(1)x(x﹣2y)﹣(x+y)(x+3y)(2)(+a+3)÷26.(10分)如圖,在ABC中,AC=BC,∠ACB=120°,點(diǎn)D是AB邊上一點(diǎn),連接CD,以CD為邊作等邊CDE.(1)如圖1,若∠CDB=45°,AB=6,求等邊CDE的邊長;(2)如圖2,點(diǎn)D在AB邊上移動過程中,連接BE,取BE的中點(diǎn)F,連接CF,DF,過點(diǎn)D作DG⊥AC于點(diǎn)G.①求證:CF⊥DF;②如圖3,將CFD沿CF翻折得CF,連接B,直接寫出的最小值.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】常數(shù)項(xiàng)移到方程的右邊,兩邊配上一次項(xiàng)系數(shù)一半的平方,寫成完全平方式即可得.【詳解】解:∵,
∴,即,
故選:D.【點(diǎn)睛】本題考查配方法解一元二次方程,熟練掌握完全平方公式和配方法的基本步驟是解題的關(guān)鍵.2、A【解析】根據(jù)直線和圓的位置關(guān)系的判定方法,即圓心到直線的距離大于半徑,則直線與圓相離進(jìn)行判斷.【詳解】解:∵圓心O到直線l的距離d=1,⊙O的半徑R=4,∴d>R,∴直線和圓相離.故選:A.【點(diǎn)睛】本題考查直線與圓位置關(guān)系的判定.掌握半徑和圓心到直線的距離之間的數(shù)量關(guān)系是解答此題的關(guān)鍵..3、B【分析】根據(jù)二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)依次進(jìn)行判斷即可求解.【詳解】解:∵拋物線開口向下,∴a<0;∵拋物線的對稱軸為直線x=﹣=1,∴b=﹣2a>0,所以②正確;∵拋物線與y軸的交點(diǎn)在x軸上方,∴c>0,∴abc<0,所以①錯誤;∵拋物線與x軸的一個交點(diǎn)坐標(biāo)是(3,0),對稱軸為直線x=1,∴拋物線與x軸的另一個交點(diǎn)坐標(biāo)是(﹣1,0),∴x=﹣2時,y<0,∴4a﹣2b+c<0,所以③錯誤;∵拋物線與x軸的2個交點(diǎn)坐標(biāo)為(﹣1,0),(3,0),∴﹣1<x<3時,y>0,所以④正確;∵x=﹣1時,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴b﹣c=﹣2a+3a=a<0,即b<c,所以⑤正確.故選B.【點(diǎn)睛】此題主要考查二次函數(shù)的圖像與性質(zhì),解題的關(guān)鍵是熟知二次函數(shù)的圖像性質(zhì)特點(diǎn).4、B【詳解】解:摸了150次,其中有50次摸到黑球,則摸到黑球的頻率是,設(shè)口袋中大約有x個白球,則,解得x=1.經(jīng)檢驗(yàn):x=1是原方程的解故選B.5、A【分析】利用位似圖形的性質(zhì)和兩圖形的位似比,并結(jié)合點(diǎn)A的坐標(biāo)即可得出C點(diǎn)坐標(biāo).【詳解】解:∵線段AB的兩個端點(diǎn)坐標(biāo)分別為A(6,6),B(8,2),以原點(diǎn)O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,∴端點(diǎn)C的橫坐標(biāo)和縱坐標(biāo)都變?yōu)锳點(diǎn)的一半,∴端點(diǎn)C的坐標(biāo)為:(3,3).故選A.【點(diǎn)睛】本題主要考查位似變換、坐標(biāo)與圖形性質(zhì),解題的關(guān)鍵是結(jié)合位似比和點(diǎn)A的坐標(biāo).6、C【分析】根據(jù)相似三角形的面積比等于相似比的平方可直接得出結(jié)果.【詳解】解:∵兩個相似三角形的面積比為9:4,
∴它們的相似比為3:1.
故選:C.【點(diǎn)睛】此題主要考查了相似三角形的性質(zhì):相似三角形的面積比等于相似比的平方.7、A【解析】方程利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程來求解.【詳解】解:方程x(x-1)=0,
可得x=0或x-1=0,
解得:x=0或x=1.
故選:A.【點(diǎn)睛】此題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關(guān)鍵.8、C【解析】根據(jù)軸對稱圖形的定義沿一條直線對折后,直線兩旁部分完全重合的圖形是軸對稱圖形,以及中心對稱圖形的定義分別判斷即可得出答案.【詳解】A.此圖形沿一條直線對折后不能夠完全重合,∴此圖形不是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)錯誤;B.此圖形沿一條直線對折后能夠完全重合,∴此圖形不是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)錯誤。C.此圖形沿一條直線對折后能夠完全重合,∴此圖形是軸對稱圖形,旋轉(zhuǎn)180°能與原圖形重合,是中心對稱圖形,故此選項(xiàng)正確;D.此圖形沿一條直線對折后能夠完全重合,旋轉(zhuǎn)180°不能與原圖形重合,∴此圖形是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)錯誤。故選C【點(diǎn)睛】此題考查軸對稱圖形和中心對稱圖形,難度不大9、D【分析】本題可先由一次函數(shù)y=ax+c圖象得到字母系數(shù)的正負(fù),再與二次函數(shù)y=ax2+bx+c的圖象相比較看是否一致.【詳解】A、一次函數(shù)y=ax+c與y軸交點(diǎn)應(yīng)為(0,c),二次函數(shù)y=ax2+bx+c與y軸交點(diǎn)也應(yīng)為(0,c),圖象不符合,故本選項(xiàng)錯誤;B、由拋物線可知,a>0,由直線可知,a<0,a的取值矛盾,故本選項(xiàng)錯誤;C、由拋物線可知,a<0,由直線可知,a>0,a的取值矛盾,故本選項(xiàng)錯誤;D、由拋物線可知,a<0,由直線可知,a<0,且拋物線與直線與y軸的交點(diǎn)相同,故本選項(xiàng)正確.故選D.【點(diǎn)睛】本題考查拋物線和直線的性質(zhì),用假設(shè)法來搞定這種數(shù)形結(jié)合題是一種很好的方法.10、D【分析】當(dāng)a=b時,可得出=2;當(dāng)a≠b時,a、b為一元二次方程x2-6x+2=0的兩根,利用根與系數(shù)的關(guān)系可得出a+b=6,ab=2,再將其代入=中即可求出結(jié)論.【詳解】當(dāng)a=b時,=1+1=2;
當(dāng)a≠b時,∵a、b滿足a2-6a+2=0,b2-6b+2=0,
∴a、b為一元二次方程x2-6x+2=0的兩根,
∴a+b=6,ab=2,
∴==1.
故選:D.【點(diǎn)睛】此題考查根與系數(shù)的關(guān)系,分a=b及a≠b兩種情況,求出的值是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【解析】分析:根據(jù)勾股定理求出,根據(jù)∥,得到,即可求出的長.詳解:∵四邊形是矩形,∴,∥,,在中,,∴,∵是中點(diǎn),∴,∵∥,∴,∴.故答案為.點(diǎn)睛:考查矩形的性質(zhì),勾股定理,相似三角形的性質(zhì)及判定,熟練掌握相似三角形的判定方法和性質(zhì)是解題的關(guān)鍵.12、1【分析】作直徑CD,如圖,連接BD,根據(jù)圓周角定理得到∠CBD=90°,∠D=10°,然后利用含30度的直角三角形三邊的關(guān)系求出CD,從而得到⊙O的半徑.【詳解】解:作直徑CD,如圖,連接BD,∵CD為⊙O直徑,∴∠CBD=90°,∵∠D=∠A=10°,∴BD=BC=×1=1,∴CD=2BD=12,∴OC=1,即⊙O的半徑是1.故答案為1.【點(diǎn)睛】本題主要考查圓周角的性質(zhì),解決本題的關(guān)鍵是要熟練掌握圓周角的性質(zhì).13、【解析】∵等腰直角△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,∴陰影部分的面積=×5×tan30°×5=.14、這個“果圓”被y軸截得的線段CD的長3+.【分析】連接AC,BC,有拋物線的解析式可求出A,B,C的坐標(biāo),進(jìn)而求出AO,BO,DO的長,在直角三角形ACB中,利用射影定理可求出CO的長,進(jìn)而可求出CD的長.【詳解】連接AC,BC,∵拋物線的解析式為y=(x-1)2-4,∴點(diǎn)D的坐標(biāo)為(0,?3),∴OD的長為3,設(shè)y=0,則0=(x-1)2-4,解得:x=?1或3,∴A(?1,0),B(3,0)∴AO=1,BO=3,∵AB為半圓的直徑,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO?BO=3,∴CO=,∴CD=CO+OD=3+,故答案為3+.15、50°.【詳解】解:∵∠A=70°,∴∠C=180°﹣∠A=110°,∴∠BOD=2∠A=140°,∵∠OBC=60°,∴∠ODC=360°﹣110°﹣140°﹣60°=50°,故答案為50°.考點(diǎn):圓內(nèi)接四邊形的性質(zhì).16、100°【分析】利用三角形中位線定理可證明DE//BC,再根據(jù)兩直線平行,同位角相等可求得∠AED,再根據(jù)角平分線的定義可求得∠DEF,最后根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)可求得∠EFB的度數(shù).【詳解】解:∵在△ABC中,D、E分別是AB、AC的中點(diǎn),
∴DE是△ABC的中位線,
∴DE∥BC,
∴∠AED=∠C=80°,∠DEF+∠EFB=180°,
又ED是∠AEF的角平分線,
∴∠DEF=∠AED=80°,
∴∠EFB=180°-∠DEF=100°.
故答案為:100°.【點(diǎn)睛】本題考查三角形中位線定理,平行線的性質(zhì)定理,角平分線的有關(guān)證明.能得出DE是ABC中位線,并根據(jù)三角形的中位線平行于第三邊得出DE∥BC是解題關(guān)鍵.17、1.【分析】根據(jù)題意得出摸出紅球的頻率,繼而根據(jù)頻數(shù)=總數(shù)×頻率計算即可.【詳解】∵小明通過多次摸球試驗(yàn)后發(fā)現(xiàn)其中摸到紅球的頻率穩(wěn)定在40%,∴口袋中紅色球的個數(shù)可能是30×40%=1個.故答案為:1.【點(diǎn)睛】本題比較容易,考查利用頻率估計概率.大量反復(fù)試驗(yàn)下頻率穩(wěn)定值即概率.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.18、.【分析】過點(diǎn)F作FH⊥AB于點(diǎn)H,證四邊形AGFH是正方形,設(shè)AG=x,表示出CG,再證△CFG∽△CBA,根據(jù)相似比求出x即可.【詳解】如圖過點(diǎn)F作FH⊥AB于點(diǎn)H,由作圖知AD=AB=1,AE平分∠BAC,∴FG=FH,又∵∠BAC=∠AGF=90°,∴四邊形AGFH是正方形,設(shè)AG=x,則AH=FH=GF=x,∵tan∠C=,∴AC==,則CG=-x,∵∠CGF=∠CAB=90°,∴FG∥BA,∴△CFG∽△CBA,∴,即,解得x=,∴FG=,故答案為:.【點(diǎn)睛】本題是對幾何知識的綜合考查,熟練掌握三角函數(shù)及相似知識是解決本題的關(guān)鍵.三、解答題(共66分)19、(1)△AEF是等邊三角形,證明見解析;(2)CF=,CE=6或CF=6,CE=;(3)△CEF的面積不發(fā)生變化,理由見解析.【分析】(1)證明△BCE≌△DCF(SAS),得出∠BE=DF,CBE=∠CDF,證明△ABE≌△ADF(SAS),得出AE=AF,即可得出結(jié)論;(2)分兩種情況:①∠AFE=90°時,連接AC、MN,證明△MAC≌△NAD(ASA),得出AM=AN,CM=DN,證出△AMN是等邊三角形,得出AM=MN=AN,設(shè)AM=AN=MN=m,DN=CM=b,BM=CN=a,證明△CFN∽△DAN,得出,得出FN=,AF=m+,同理AE=m+,在Rt△AEF中,由直角三角形的性質(zhì)得出AE=2AF,得出m+=2(m+),得出b=2a,因此,得出CF=AD=,同理CE=2AB=6;②∠AEF=90°時,同①得出CE=AD=,CF=2AB=6;(3)作FH⊥CD于H,如圖4所示:由(2)得BM=CN=a,CM=DN=b,證明△ADN∽△FCN,得出,由平行線得出∠FCH=∠B=60°,△CEM∽△BAM,得出,得出,求出CF×CE=AD×AB=3×3=9,由三角函數(shù)得出CH=CF×sin∠FCH=CF×sin60°=CF,即可得出結(jié)論.【詳解】解:(1)△AEF是等邊三角形,理由如下:連接BE、DF,如圖1所示:∵四邊形ABCD是菱形,∴AB=BC=DC=AD,∠ABC=∠ADC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS),∴∠BE=DF,CBE=∠CDF,∴∠ABC+∠CBE=∠ADC+∠CDF,即∠ABE=∠ADF,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴AE=AF,又∵∠EAF=60°,∴△AEF是等邊三角形;(2)分兩種情況:①∠AFE=90°時,連接AC、MN,如圖2所示:∵四邊形ABCD是菱形,∴AB=BC=DC=AD=3,∠D=∠B=60°,AD∥BC,AB∥CD,∴△ABC和△ADC是等邊三角形,∴AC=AD,∠ACM=∠D=∠CAD=60°=∠EAF,∴∠MAC=∠NAD,在△MAC和△NAD中,,∴△MAC≌△NAD(ASA),∴AM=AN,CM=DN,∵∠EAF=60°,∴△AMN是等邊三角形,∴AM=MN=AN,設(shè)AM=AN=MN=m,DN=CM=b,BM=CN=a,∵CF∥AD,∴△CFN∽△DAN,∴,∴FN=,∴AF=m+,同理:AE=m+,在Rt△AEF中,∵∠EAF=60°,∴∠AEF=30°,∴AE=2AF,∴m+=2(m+),整理得:b2﹣ab﹣2a2=0,(b﹣2a)(b+a)=0,∵b+a≠0,∴b﹣2a=0,∴b=2a,∴=,∴CF=AD=,同理:CE=2AB=6;②∠AEF=90°時,連接AC、MN,如圖3所示:同①得:CE=AD=,CF=2AB=6;(3)當(dāng)CE,CF的長度發(fā)生變化時,△CEF的面積不發(fā)生變化;理由如下:作FH⊥CD于H,如圖4所示:由(2)得:BM=CN=a,CM=DN=b,∵AD∥CF,∴△ADN∽△FCN,∴,∵CE∥AB,∴∠FCH=∠B=60°,△CEM∽△BAM,∴,∴,∴CF×CE=AD×AB=3×3=9,∵CH=CF×sin∠FCH=CF×sin60°=CF,△CEF的面積=CE×FH=CE×CF=×9×=,∴△CEF的面積是定值,不發(fā)生變化.【點(diǎn)睛】本題考查了三角形全等,三角形相似的判定及性質(zhì),三角函數(shù)的應(yīng)用,相似的的靈活應(yīng)用是解題的關(guān)鍵20、見解析【分析】物業(yè)管理處P到B,A的距離相等,那么應(yīng)在BA的垂直平分線上,到A,C的距離相等,應(yīng)在AC的垂直平分線上,那么到A區(qū)、B區(qū)、C區(qū)的距離相等的點(diǎn)應(yīng)是這兩條垂直平分線的交點(diǎn);【詳解】解:如圖所示:【點(diǎn)睛】本題主要考查了作圖—應(yīng)用與設(shè)計作圖,掌握作圖—應(yīng)用與設(shè)計作圖是解題的關(guān)鍵.21、(1)噴出的水流距水平面的最大高度是4米.(2).(3)水池的直徑至少要6米.【分析】(1)利用配方法將一般式轉(zhuǎn)化為頂點(diǎn)式,即可求出噴出的水流距水平面的最大高度;(2)根據(jù)兩拋物線的關(guān)于y軸對稱,即可求出左邊拋物線的二次項(xiàng)系數(shù)和頂點(diǎn)坐標(biāo),從而求出左邊拋物線的解析式;(3)先求出右邊拋物線與x軸的交點(diǎn)的橫坐標(biāo),利用對稱性即可求出水池的直徑的最小值.【詳解】解:(1)∵,∴拋物線的頂點(diǎn)式為.∴噴出的水流距水平面的最大高度是4米.(2)∵兩拋物線的關(guān)于y軸對稱∴左邊拋物線的a=-1,頂點(diǎn)坐標(biāo)為(-1,4)左邊拋物線的表達(dá)式為.(3)將代入,則得,解得,(求拋物線與x軸的右交點(diǎn),故不合題意,舍去).∵(米)∴水池的直徑至少要6米.【點(diǎn)睛】此題考查的是二次函數(shù)的應(yīng)用,掌握將二次函數(shù)的一般式轉(zhuǎn)化為頂點(diǎn)式、利用頂點(diǎn)式求二次函數(shù)的解析式和求拋物線與x軸的交點(diǎn)坐標(biāo)是解決此題的關(guān)鍵.22、(1);(2)80噸【分析】(1))設(shè)y與x之間的函數(shù)表達(dá)式為y=,然后根據(jù)待定系數(shù)法求出解析式,然后根據(jù)k確定x的取值范圍;(2)將x=5代入函數(shù)解析式求得y的值,即可解答.【詳解】解:(1)由圖像可知與成反比例函數(shù)設(shè)∵過點(diǎn),∴∴與之間的函數(shù)表達(dá)式為;∴自變量的取值范圍:(2)∵當(dāng)時,答:平均每天至少要卸80噸貨物.【點(diǎn)睛】本題考查了反比例函數(shù)的應(yīng)用,弄清題意、確定反比例函數(shù)的解析式是解答本題的關(guān)鍵.23、(1)20;50;(2)360;(3).【解析】試題分析:(1)首先由條形圖與扇形圖可求得m=100%-14%-8%-24%-34%=20%;由跳繩的人數(shù)有4人,占的百分比為8%,可得總?cè)藬?shù)4÷8%=50;(2)由1500×24%=360,即可求得該校約有360名學(xué)生喜愛打籃球;(3)首先根據(jù)題意畫出表格,然后由表格即可求得所有等可能的結(jié)果與抽到一男一女學(xué)生的情況,再利用概率公式即可求得答案.試題解析:(1)m=100%-14%-8%-24%-34%=20%;∵跳繩的人數(shù)有4人,占的百分比為8%,∴4÷8%=50;如圖所示;50×20%=10(人).(2)1500×24%=360;(3)列表如下:
男1
男2
男3
女
男1
男2,男1
男3,男1
女,男1
男2
男1,男2
男3,男2
女,男2
男3
男1,男3
男2,男3
女,男3
女
男1,女
男2,女
男3,女
∵所有可能出現(xiàn)的結(jié)果共12種情況,并且每種情況出現(xiàn)的可能性相等.其中一男一女的情況有6種.∴抽到一男一女的概率P=.考點(diǎn):1.列表法與樹狀圖法;2.扇形統(tǒng)計圖;3.條形統(tǒng)計圖.24、(1)反比例函數(shù)的表達(dá)式y(tǒng)=,(2)點(diǎn)P坐標(biāo)(,0),(3)S△PAB=1.1.【解析】(1)把點(diǎn)A(1,a)代入一次函數(shù)中可得到A點(diǎn)坐標(biāo),再把A點(diǎn)坐標(biāo)代入反比例解析式中即可得到反比例函數(shù)的表達(dá)式;(2)作點(diǎn)D關(guān)于x軸的對稱點(diǎn)D,連接AD交x軸于點(diǎn)P,此時PA+PB的值最小.由B可知D點(diǎn)坐標(biāo),再由待定系數(shù)法求出直線AD的解析式,即可得到點(diǎn)P的坐標(biāo);(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面積.解:(1)把點(diǎn)A(1,a)代入一次函數(shù)y=﹣x+4,得a=﹣1+4,
解得a=3,
∴A(1,3),
點(diǎn)A(1,3)代入反比例函數(shù)y=,
得k=3,
∴反比例函數(shù)的表達(dá)式y(tǒng)=,
(2)把B(3,b)代入y=得,b=1∴點(diǎn)B坐標(biāo)(3,1);作點(diǎn)B作關(guān)于x軸的對稱點(diǎn)D,交x軸于點(diǎn)C,連接AD,交x軸于點(diǎn)P,此時PA+PB的值最小,
∴D(3,﹣1),設(shè)直線AD的解析式為y=mx+n,
把A,D兩點(diǎn)代入得,,
解得m=﹣2,n=1,
∴直線AD的解析式為y=﹣2x+1,令y=0,得x=,
∴點(diǎn)P坐標(biāo)(,0),(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.點(diǎn)晴:本題是一道一次函數(shù)與反比例函數(shù)的綜合題,并與幾何圖形結(jié)合在一起來求有關(guān)于最值方面的問題.此類問題的重點(diǎn)是在于通過待定系數(shù)法求出函數(shù)圖象的解析式,再通過函數(shù)解析式反過來求坐標(biāo),為接下來求面積做好鋪墊.25、(1)﹣6xy﹣3y2;(2)【分析】(1)根據(jù)整式的混合運(yùn)算順序和運(yùn)算法則,即可求解;(2)根據(jù)分式的混合運(yùn)算順序和運(yùn)算法則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年“新九論”學(xué)習(xí)心得體會例文(3篇)
- 2025年湖南貨運(yùn)從業(yè)資格證新政
- 2025年濰坊b2貨運(yùn)資格證多少道題
- 二零二五版籃球場地租賃及賽事門票銷售合同3篇
- 2025版體檢服務(wù)信息化建設(shè)合作合同協(xié)議2篇
- 2024跨國公司研發(fā)中心合作合同
- 二零二五年度城市綜合體消防安全管理代理服務(wù)合同3篇
- 二零二五年度合同擔(dān)保制度標(biāo)準(zhǔn)合同范本匯編3篇
- 2025版天然氣發(fā)電機(jī)組購銷合同范本3篇
- 2025年度個人對公司借款及稅收優(yōu)惠合同規(guī)范4篇
- 無人化農(nóng)場項(xiàng)目可行性研究報告
- 《如何存款最合算》課件
- 社區(qū)團(tuán)支部工作計劃
- 拖欠工程款上訪信范文
- 2024屆上海市金山區(qū)高三下學(xué)期二模英語試題(原卷版)
- 《wifi協(xié)議文庫》課件
- 《好東西》:女作者電影的話語建構(gòu)與烏托邦想象
- 教培行業(yè)研究系列(七):出國考培的再研究供需變化的新趨勢
- 真人cs基于信號發(fā)射的激光武器設(shè)計
- 2024年國信證券招聘筆試參考題庫附帶答案詳解
- 道醫(yī)館可行性報告
評論
0/150
提交評論