下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省揭陽市文彥中學(xué)2022-2023學(xué)年高二數(shù)學(xué)文模擬試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.下列各不等式:①a+1>2a;②③④⑤其中正確的個數(shù)是
(
)A.
0個
B.1個
C.2個
D.3個參考答案:D2.已知等差數(shù)列中,,,則前項的和等于
參考答案:C設(shè)等差數(shù)列的公差為,則,,所以,故選.
3.在△ABC中,sin2A≤sin2B+sin2C-sinBsinC,則A的取值范圍是()A.
B.
C.
D.參考答案:C略4.橢圓的一個頂點與兩個焦點構(gòu)成等腰直角三角形,則此橢圓的離心率為(
)A.
B.
C.
D.
參考答案:D略5.函數(shù)的圖象大致是(
)
參考答案:A6.某幾何體的正視圖如左圖所示,則該幾何體的俯視圖不可能的是參考答案:C7.函數(shù)在上
(
)A.是增函數(shù)
B.是減函數(shù)
C.有最大值
D.有最小值參考答案:A略8.如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,給出下列命題:①函數(shù)y=f(x)必有兩個相異的零點;②函數(shù)y=f(x)只有一個極值點;③y=f(x)在x=0處切線的斜率小于零;④y=f(x)在區(qū)間(﹣3,1)上單調(diào)遞增.則正確命題的序號是()A.①④ B.②④ C.②③ D.③④參考答案:B【考點】利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.【分析】根據(jù)導(dǎo)函數(shù)圖象可判定導(dǎo)函數(shù)的符號,從而確定函數(shù)的單調(diào)性,得到極值點,以及根據(jù)導(dǎo)數(shù)的幾何意義可知在某點處的導(dǎo)數(shù)即為在該點處的切線斜率.【解答】解:根據(jù)導(dǎo)函數(shù)圖象可知當(dāng)x∈(﹣∞,﹣3)時,f'(x)<0,在x∈(﹣3,1)時,f'(x)≥0,∴函數(shù)y=f(x)在(﹣∞,﹣3)上單調(diào)遞減,在(﹣3,1)上單調(diào)遞增,故④正確;﹣3是函數(shù)y=f(x)的極小值點,當(dāng)f(﹣3)<0時,函數(shù)y=f(x)有兩個相異的零點,故①錯誤;∵在(﹣3,1)上單調(diào)遞增∴﹣1不是函數(shù)y=f(x)的最小值點,∴函數(shù)y=f(x)只有一個極值點,故②正確;∵函數(shù)y=f(x)在x=0處的導(dǎo)數(shù)大于0,∴切線的斜率大于零,故③不正確;故②④正確,故選:B.9.某船開始看見燈塔在南偏東30方向,后來船沿南偏東60的方向航行45km后,看見燈塔在正西方向,則這時船與燈塔的距離是
A.km
B.km
C.km
D.
km參考答案:C10.已知,都是負(fù)實數(shù),則的最小值是A.
B.2(-1)
C.2-1
D.2(+1)參考答案:B略二、填空題:本大題共7小題,每小題4分,共28分11.兩個相交平面能把空間分成
▲
個部分參考答案:412.直線過點,傾斜角是,且與直線交于,則的長為
。參考答案:13.復(fù)數(shù)的共軛復(fù)數(shù)是
。參考答案:略14.若橢圓+=1的離心率為,則m的值為
.參考答案:或18【考點】橢圓的簡單性質(zhì).【分析】分當(dāng)橢圓焦點在x軸上或焦點在y軸上進(jìn)行討論,根據(jù)橢圓的標(biāo)準(zhǔn)方程算出a、b、c值,由離心率為建立關(guān)于m的方程,解之即可得到實數(shù)m之值.【解答】解:∵橢圓方程為+=1,∴①當(dāng)橢圓焦點在x軸上時,a2=16,b2=m,可得c==,離心率e=,化簡得1﹣=,解得m=②當(dāng)橢圓焦點在y軸上時,a2=m,b2=16,可得c==離心率e=,化簡得1﹣=,解得m=18.綜上所述m=或m=18故答案為:或1815.在直角坐標(biāo)平面中,已知兩定點與位于動直線的同側(cè),設(shè)集合點與點到直線的距離之和等于,,則由中的所有點所組成的圖形的面積是_________.參考答案:16.已知雙曲線的漸近線方程為y=±x,且過點M(-1,3),則該雙曲線的標(biāo)準(zhǔn)方程為____________。 參考答案:略17.從3名骨科、4名腦外科和5名內(nèi)科醫(yī)生中選派5人組成一個抗震救災(zāi)醫(yī)療小組,則骨科、腦外科和內(nèi)科醫(yī)生都至少有人的選派方法種數(shù)是___________.(用數(shù)字作答)參考答案:略三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.已知雙曲線與橢圓x2+4y2=64共焦點,它的一條漸近線方程為x﹣y=0,求雙曲線的標(biāo)準(zhǔn)方程.參考答案:【考點】雙曲線的標(biāo)準(zhǔn)方程.【分析】由題意知c=4,利用漸近線方程為x﹣y=0,可得b、a關(guān)系,求出a,b,即可求出雙曲線的標(biāo)準(zhǔn)方程.【解答】解:由題意橢圓x2+4y2=64知c=4,焦點坐標(biāo)在x軸上,又一條漸近線方程是x﹣y=0的雙曲線,∴b=a.而c2=a2+b2,48=a2+b2,∴a=6,b=2,故所求雙曲線的標(biāo)準(zhǔn)方程為:.【點評】本題主要考查圓錐曲線的基本元素之間的關(guān)系問題,同時雙曲線、橢圓的相應(yīng)知識也進(jìn)行了綜合性考查.解答的關(guān)鍵是弄清它們的不同點列出方程式求解.19.在平面直角坐標(biāo)系xOy中,曲線y=x2-6x+1與坐標(biāo)軸的交點都在圓C上.(1)求圓C的方程;(2)若圓C與直線x-y+a=0交于A、B兩點,且OA⊥OB,求a的值.(13分參考答案:解:(1)曲線y=x2-6x+1與y軸的交點為(0,1),與x軸的交點為(3+2,0),(3-2,0).故可設(shè)C的圓心為(3,t),則有32+(t-1)2=(2)2+t2,解得t=1.則圓C的半徑為=3.所以圓C的方程為(x-3)2+(y-1)2=9.(2)設(shè)A(x1,y1),B(x2,y2),其坐標(biāo)滿足方程組消去y,得到方程2x2+(2a-8)x+a2-2a+1=0.由已知可得,判別式Δ=56-16a-4a2>0.從而x1+x2=4-a,x1x2=.①由于OA⊥OB,可得x1x2+y1y2=0.又y1=x1+a,y2=x2+a,所以2x1x2+a(x1+x2)+a2=0.②由①,②得a=-1,滿足Δ>0,故a=-1.20.在直角坐標(biāo)系中,已知曲線的參數(shù)方程是(為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,直線的極坐標(biāo)方程是.(Ⅰ)求曲線的普通方程和直線的直角坐標(biāo)方程;(Ⅱ)點是曲線上的動點,求點到直線距離的最小值.參考答案:解:(Ⅰ)曲線的普通方程為,直線的方程為,
…………5分(Ⅱ)法一、圓心到直線的距離,∴的最小值為.
…………10分法二、點到直線的距離當(dāng)時,
……………10分
略21.已知公差大于零的等差數(shù)列的前n項和為Sn,且滿足:,.(1)求數(shù)列的通項公式;(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù)c;(3)若(2)中的的前n項和為,求證:.參考答案:解:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度新能源車輛租賃與運營合同
- 2024幼兒園保育員崗位聘用與薪酬待遇合同范本3篇
- 2024年版國際物流運輸合同(含多式聯(lián)運)
- 2024年購物中心導(dǎo)視系統(tǒng)設(shè)計合同3篇
- 「2024年度」智能穿戴設(shè)備研發(fā)合同
- 上海摩托車租賃協(xié)議(2024年新版)3篇
- 2024年職場勞動協(xié)議標(biāo)準(zhǔn)格式版B版
- 2024版苗圃采購合同
- 矯形鞋墊知識培訓(xùn)課件
- 2024整合勞務(wù)承包工程合同范本3篇
- 《海底電力電纜輸電工程施工及驗收規(guī)范》
- 馬克思主義基本原理-2023版-課后習(xí)題答案
- 基坑支護(hù)工程質(zhì)量控制要點
- 2024年度公司大事記
- (試題)考試護(hù)理應(yīng)急預(yù)案題庫與答案
- 【閱讀提升】部編版語文五年級下冊第一單元閱讀要素解析 類文閱讀課外閱讀過關(guān)(含答案)
- 2024年大學(xué)試題(管理類)-行政管理學(xué)筆試歷年真題薈萃含答案
- 《爆破振動測試技術(shù)》課件
- 醫(yī)療機(jī)構(gòu)規(guī)章制度目錄
- 中國地圖素材課件
- 中藥學(xué)知識歸納總結(jié)
評論
0/150
提交評論