版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
章末分層突破[自我校對]①pi≥0,i=1,2,…,n②eq\i\su(i=1,n,p)i=1③兩點分布④超幾何分布⑤P(B|A)=eq\f(PAB,PA)⑥0≤P(B|A)≤1P((B+C)|A)=P(B|A)+P(C|A)(B,C互斥)⑦P(AB)=P(A)·P(B)⑧A與B相互獨立,則eq\x\to(A)與B,A與eq\x\to(B),eq\x\to(A)與eq\x\to(B)相互獨立⑨P(X=k)=Ceq\o\al(k,n)pk(1-p)n-k(k=0,1,2,…,n)⑩E(aX+b)=aE(X)+b?E(X)=p?E(X)=np?V(X)=p(1-p)?V(X)=np(1-p)?V(aX+b)=a2V(X)條件概率條件概率是學(xué)習(xí)相互獨立事件的前提和基礎(chǔ),計算條件概率時,必須搞清欲求的條件概率是在什么條件下發(fā)生的概率.求條件概率的主要方法有:利用條件概率公式P(B|A)=eq\f(PAB,PA)計算.在5道題中有3道理科題和2道文科題.如果不放回地依次抽取2道題,求:(1)第1次抽到理科題的概率;(2)第1次和第2次都抽到理科題的概率;(3)在第1次抽到理科題的條件下,第2次抽到理科題的概率.【精彩點撥】本題是條件概率問題,根據(jù)條件概率公式求解即可.【規(guī)范解答】設(shè)“第1次抽到理科題”為事件A,“第2題抽到理科題”為事件B,則“第1次和第2次都抽到理科題”為事件AB.(1)從5道題中不放回地依次抽取2道題的事件數(shù)為n(Ω)=Aeq\o\al(2,5)=20.根據(jù)分步計數(shù)原理,n(A)=Aeq\o\al(1,3)×Aeq\o\al(1,4)=12.于是P(A)=eq\f(nA,nΩ)=eq\f(12,20)=eq\f(3,5).(2)因為n(AB)=Aeq\o\al(2,3)=6,所以P(AB)=eq\f(nAB,nΩ)=eq\f(6,20)=eq\f(3,10).(3)由(1)(2)可得,在第1次抽到理科題的條件下,第2次抽到理科題的概率P(B|A)=eq\f(PAB,PA)=eq\f(\f(3,10),\f(3,5))=eq\f(1,2).[再練一題]1.?dāng)S兩顆均勻的骰子,已知第一顆骰子擲出6點,問“擲出點數(shù)之和大于或等于10”【解】設(shè)“擲出的點數(shù)之和大于或等于10”為事件A,“第一顆骰子擲出6點”為事件B.P(A|B)=eq\f(PAB,PB)=eq\f(\f(3,36),\f(6,36))=eq\f(1,2).相互獨立事件的概率求相互獨立事件一般與互斥事件、對立事件結(jié)合在一起進(jìn)行考查,解答此類問題時應(yīng)分清事件間的內(nèi)部聯(lián)系,在此基礎(chǔ)上用基本事件之間的交、并、補運算表示出有關(guān)事件,并運用相應(yīng)公式求解.特別注意以下兩公式的使用前提:(1)若A,B互斥,則P(A+B)=P(A)+P(B),反之不成立.(2)若A,B相互獨立,則P(AB)=P(A)P(B),反之成立.設(shè)每個工作日甲、乙、丙、丁4人需使用某種設(shè)備的概率分別為,,,,各人是否需使用設(shè)備相互獨立.(1)求同一工作日至少3人需使用設(shè)備的概率;(2)X表示同一工作日需使用設(shè)備的人數(shù),求P(X=1).【精彩點撥】解決本題的關(guān)鍵是將復(fù)雜事件拆分成若干個彼此互斥事件的和或幾個彼此相互獨立事件的積事件,再利用相應(yīng)公式求解.【規(guī)范解答】記Ai表示事件:同一工作日乙、丙中恰有i人需使用設(shè)備,i=0,1,2,B表示事件:甲需使用設(shè)備,C表示事件:丁需使用設(shè)備,D表示事件:同一工作日至少3人需使用設(shè)備.(1)D=A1BC+A2B+A2eq\x\to(B)C,P(B)=,P(C)=,P(Ai)=Ceq\o\al(i,2)×,i=0,1,2,所以P(D)=P(A1BC+A2B+A2eq\x\to(B)C)=P(A1BC)+P(A2B)+P(A2eq\x\to(B)C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(eq\x\to(B))P(C)=.(2)X=1表示在同一工作日有一人需使用設(shè)備.P(X=1)=P(BA0eq\x\to(C)+eq\x\to(B)A0C+eq\x\to(B)A1eq\x\to(C))=P(B)P(A0)P(eq\x\to(C))+P(eq\x\to(B))P(A0)P(C)+P(eq\x\to(B))·P(A1)P(eq\x\to(C))=××(1-+(1-××+(1-×2××(1-=.[再練一題]2.某同學(xué)參加科普知識競賽,需回答3個問題,競賽規(guī)則規(guī)定:答對第1,2,3個問題分別得100分,100分,200分,答錯得零分.假設(shè)這名同學(xué)答對第1,2,3個問題的概率分別為,,.且各題答對與否相互之間沒有影響.(1)求這名同學(xué)得300分的概率;(2)求這名同學(xué)至少得300分的概率.【解】記“這名同學(xué)答對第i個問題”為事件Ai(i=1,2,3),則P(A1)=,P(A2)=,P(A3)=.(1)這名同學(xué)得300分的概率為:P1=P(A1eq\x\to(A)2A3)+P(eq\x\to(A)1A2A3)=P(A1)P(eq\x\to(A)2)P(A3)+P(eq\x\to(A)1)P(A2)P(A3)=××+××=.(2)這名同學(xué)至少得300分的概率為:P2=P1+P(A1A2A3)=P1+P(A1)P(A2)P(=+××=.離散型隨機變量的分布列、均值和方差1.含義:均值和方差分別反映了隨機變量取值的平均水平及其穩(wěn)定性.2.應(yīng)用范圍:均值和方差在實際優(yōu)化問題中應(yīng)用非常廣泛,如同等資本下比較收益的高低、相同條件下比較質(zhì)量的優(yōu)劣、性能的好壞等.3.求解思路:應(yīng)用時,先要將實際問題數(shù)學(xué)化,然后求出隨機變量的概率分布列.對于一般類型的隨機變量,應(yīng)先求其分布列,再代入公式計算,此時解題的關(guān)鍵是概率的計算.計算概率時要結(jié)合事件的特點,靈活地結(jié)合排列組合、古典概型、獨立重復(fù)試驗概率、互斥事件和相互獨立事件的概率等知識求解.若離散型隨機變量服從特殊分布(如兩點分布、二項分布等),則可直接代入公式計算其數(shù)學(xué)期望與方差.甲、乙、丙三支足球隊進(jìn)行比賽,根據(jù)規(guī)則:每支隊伍比賽兩場,共賽三場,每場比賽勝者得3分,負(fù)者得0分,沒有平局.已知乙隊勝丙隊的概率為eq\f(1,5),甲隊獲得第一名的概率為eq\f(1,6),乙隊獲得第一名的概率為eq\f(1,15).(1)求甲隊分別勝乙隊和丙隊的概率P1,P2;(2)設(shè)在該次比賽中,甲隊得分為ξ,求ξ的分布列及數(shù)學(xué)期望、方差.【精彩點撥】(1)通過列方程組求P1和P2;(2)由題意求出甲隊得分ξ的可能取值,然后再求出ξ的分布列,最后再求出數(shù)學(xué)期望和方差.【規(guī)范解答】(1)設(shè)“甲隊勝乙隊”的概率為P1,“甲隊勝丙隊”的概率為P2.根據(jù)題意,甲隊獲得第一名,則甲隊勝乙隊且甲隊勝丙隊,所以甲隊獲得第一名的概率為P1×P2=eq\f(1,6).①乙隊獲得第一名,則乙隊勝甲隊且乙隊勝丙隊,所以乙隊獲得第一名的概率為(1-P1)×eq\f(1,5)=eq\f(1,15).②解②,得P1=eq\f(2,3),代入①,得P2=eq\f(1,4),所以甲隊勝乙隊的概率為eq\f(2,3),甲隊勝丙隊的概率為eq\f(1,4).(2)ξ的可能取值為0,3,6.當(dāng)ξ=0時,甲隊兩場比賽皆輸,其概率為P(ξ=0)=eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(2,3)))×eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,4)))=eq\f(1,4);當(dāng)ξ=3時,甲隊兩場只勝一場,其概率為P(ξ=3)=eq\f(2,3)×eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,4)))+eq\f(1,4)×eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(2,3)))=eq\f(7,12);當(dāng)ξ=6時,甲隊兩場皆勝,其概率為P(ξ=6)=eq\f(2,3)×eq\f(1,4)=eq\f(1,6).所以ξ的分布列為ξ036Peq\f(1,4)eq\f(7,12)eq\f(1,6)所以E(ξ)=0×eq\f(1,4)+3×eq\f(7,12)+6×eq\f(1,6)=eq\f(11,4).V(ξ)=eq\b\lc\(\rc\)(\a\vs4\al\co1(0-\f(11,4)))2×eq\f(1,4)+eq\b\lc\(\rc\)(\a\vs4\al\co1(3-\f(11,4)))2×eq\f(7,12)+eq\b\lc\(\rc\)(\a\vs4\al\co1(6-\f(11,4)))2×eq\f(1,6)=eq\f(59,16).[再練一題]3.為推動乒乓球運動的發(fā)展,某乒乓球比賽允許不同協(xié)會的運動員組隊參加.現(xiàn)有來自甲協(xié)會的運動員3名,其中種子選手2名;乙協(xié)會的運動員5名,其中種子選手3名.從這8名運動員中隨機選擇4人參加比賽.(1)設(shè)A為事件“選出的4人中恰有2名種子選手,且這2名種子選手來自同一個協(xié)會”,求事件A發(fā)生的概率;(2)設(shè)X為選出的4人中種子選手的人數(shù),求隨機變量X的分布列和數(shù)學(xué)期望.【解】(1)由已知,有P(A)=eq\f(C\o\al(2,2)C\o\al(2,3)+C\o\al(2,3)C\o\al(2,3),C\o\al(4,8))=eq\f(6,35).所以,事件A發(fā)生的概率為eq\f(6,35).(2)隨機變量X的所有可能取值為1,2,3,4.P(X=k)=eq\f(C\o\al(k,5)C\o\al(4-k,3),C\o\al(4,8))(k=1,2,3,4).所以,隨機變量X的分布列為X1234Peq\f(1,14)eq\f(3,7)eq\f(3,7)eq\f(1,14)隨機變量X的數(shù)學(xué)期望E(X)=1×eq\f(1,14)+2×eq\f(3,7)+3×eq\f(3,7)+4×eq\f(1,14)=eq\f(5,2).正態(tài)分布的實際應(yīng)用對于正態(tài)分布問題,課標(biāo)要求不是很高,只要求了解正態(tài)分布中最基礎(chǔ)的知識,主要是:(1)掌握正態(tài)分布曲線函數(shù)關(guān)系式;(2)理解正態(tài)分布曲線的性質(zhì);(3)記住正態(tài)分布在三個區(qū)間內(nèi)取值的概率,運用對稱性結(jié)合圖象求相應(yīng)的概率.正態(tài)分布的概率通常有以下兩種方法:(1)注意“3σ原則”的應(yīng)用.記住正態(tài)總體在三個區(qū)間內(nèi)取值的概率.(2)注意數(shù)形結(jié)合.由于正態(tài)分布密度曲線具有完美的對稱性,體現(xiàn)了數(shù)形結(jié)合的重要思想,因此運用對稱性結(jié)合圖象解決某一區(qū)間內(nèi)的概率問題成為熱點問題.某學(xué)校高三2500名學(xué)生第二次模擬考試總成績服從正態(tài)分布N(500,502),請您判斷考生成績X在550~600分的人數(shù).【精彩點撥】根據(jù)正態(tài)分布的性質(zhì)求出P(550<x≤600),即可解決在550~600分的人數(shù).【規(guī)范解答】∵考生成績X~N(500,502),∴μ=500,σ=50,∴P(550<X≤600)=eq\f(1,2)[P(500-2×50<X≤500+2×50)-P(500-50<X≤500+50)]=eq\f(1,2)4-6)=9,∴考生成績在550~600分的人數(shù)為2500×9≈340(人).[再練一題]4.為了了解某地區(qū)高三男生的身體發(fā)育狀況,抽查了該地區(qū)1000名年齡在歲至19歲的高三男生的體重情況,抽查結(jié)果表明他們的體重X(kg)服從正態(tài)分布N(μ,22),且正態(tài)分布密度曲線如圖2-1所示.若體重大于58.5kg小于等于62.5kg屬于正常情況,則這1000名男生中屬于正常情況的人數(shù)是________.圖2-1【解析】由題意,可知μ=,σ=2,故P<X≤=P(μ-σ<X≤μ+σ)=6,從而屬于正常情況的人數(shù)是1000×6≈683.【答案】6831.將一顆質(zhì)地均勻的骰子(一種各個面上分別標(biāo)有1,2,3,4,5,6個點的正方體玩具)先后拋擲2次,則出現(xiàn)向上的點數(shù)之和小于10的概率是________.【解析】將一顆質(zhì)地均勻的骰子先后拋擲2次,所有等可能的結(jié)果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,6),共36種情況.設(shè)事件A=“出現(xiàn)向上的點數(shù)之和小于10”,其對立事件eq\x\to(A)=“出現(xiàn)向上的點數(shù)之和大于或等于10”,eq\x\to(A)包含的可能結(jié)果有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6種情況.所以由古典概型的概率公式,得P(eq\x\to(A))=eq\f(6,36)=eq\f(1,6),所以P(A)=1-eq\f(1,6)=eq\f(5,6).【答案】eq\f(5,6)2.已知隨機變量X服從二項分布B(n,p).若E(X)=30,D(X)=20,則p=________.【解析】由E(X)=30,D(X)=20,可得eq\b\lc\{\rc\(\a\vs4\al\co1(np=30,,np1-p=20,))解得p=eq\f(1,3).【答案】eq\f(1,3)3.A,B,C三個班共有100名學(xué)生,為調(diào)查他們的體育鍛煉情況,通過分層抽樣獲得了部分學(xué)生一周的鍛煉時間,數(shù)據(jù)如下表(單位:小時):A班678B班6789101112C班36912(1)試估計C班的學(xué)生人數(shù);(2)從A班和C班抽出的學(xué)生中,各隨機選取一人,A班選出的人記為甲,C班選出的人記為乙,假設(shè)所有學(xué)生的鍛煉時間相互獨立,求該周甲的鍛煉時間比乙的鍛煉時間長的概率;(3)再從A,B,C三個班中各隨機抽取一名學(xué)生,他們該周的鍛煉時間分別是7,9,(單位:小時).這3個新數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為μ1,表格中數(shù)據(jù)的平均數(shù)記為μ0,試判斷μ0和μ1的大小.(結(jié)論不要求證明)【解】(1)由題意知,抽出的20名學(xué)生中,來自C班的學(xué)生有8名.根據(jù)分層抽樣的方法,估計C班的學(xué)生人數(shù)為100×eq\f(8,20)=40.(2)設(shè)事件Ai為“甲是現(xiàn)有樣本中A班的第i個人”,i=1,2,…,5,事件Cj為“乙是現(xiàn)有樣本中C班的第j個人”,j=1,2,…,8.由題意可知,P(Ai)=eq\f(1,5),i=1,2,…,5;P(Cj)=eq\f(1,8),j=1,2,…,8.P(AiCj)=P(Ai)P(Cj)=eq\f(1,5)×eq\f(1,8)=eq\f(1,40),i=1,2,…,5,j=1,2,…,8.設(shè)事件E為“該周甲的鍛煉時間比乙的鍛煉時間長”.由題意知,E=A1C1∪A1C2∪A2C1∪A2C2∪A2C3∪A3C1∪A3C2∪A3C3∪A4C1∪A4C2∪A4C3∪A5C1∪A5C2∪A5C3∪A5C4.因此P(E)=P(A1C1)+P(A1C2)+P(A2C1)+P(A2C2)+P(A2C3)+P(A3C1)+P(A3C2)+P(A3C3)+P(A4C1)+P(A4C2)+P(A4C3)+P(A5C1)+P(A5C2)+P(A5C3)+P(A5C4)=15×eq\f(1,40)=eq\f(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 進(jìn)行性延髓麻痹病因介紹
- T-CIE 232-2024 液氣換熱型水冷板式間接液冷數(shù)據(jù)中心設(shè)計規(guī)范
- 中考地理總復(fù)習(xí)七下第七章了解地區(qū)第九課時教材知識梳理
- 呼吸道職業(yè)暴露
- (報批版)塑料造粒環(huán)評報告書
- 商務(wù)勵志工作報告匯報模板33
- 重慶2020-2024年中考英語5年真題回-教師版-專題01 語法選擇
- 云南省曲靖市沾益區(qū)2024-2025學(xué)年七年級9月月考道德與法治試題(解析版)-A4
- 2023年汽車電噴項目融資計劃書
- 2023年變壓器、整流器和電感器項目融資計劃書
- IEC60335-1-2020中文版-家用和類似用途電器的安全第1部分:通用要求(中文翻譯稿)
- 《HSK標(biāo)準(zhǔn)教程1》-HSK1-L8課件
- 保險專題高凈值人士的財富傳承課件
- 幼兒園小班繪本:《藏在哪里了》 課件
- 上冊外研社六年級英語復(fù)習(xí)教案
- 替班換班登記表
- 社會保險法 課件
- 阿利的紅斗篷 完整版課件PPT
- 橋梁工程擋土墻施工
- 供應(yīng)商質(zhì)量問題處理流程范文
- 實驗室生物安全手冊(完整版)資料
評論
0/150
提交評論