版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.給出下列四個(gè)命題:①若“且”為假命題,則﹑均為假命題;②三角形的內(nèi)角是第一象限角或第二象限角;③若命題,,則命題,;④設(shè)集合,,則“”是“”的必要條件;其中正確命題的個(gè)數(shù)是()A. B. C. D.2.某學(xué)校調(diào)查了200名學(xué)生每周的自習(xí)時(shí)間(單位:小時(shí)),制成了如圖所示的頻率分布直方圖,其中自習(xí)時(shí)間的范圍是17.5,30],樣本數(shù)據(jù)分組為17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根據(jù)直方圖,這200名學(xué)生中每周的自習(xí)時(shí)間不少于22.5小時(shí)的人數(shù)是()A.56 B.60 C.140 D.1203.某程序框圖如圖所示,若輸出的,則判斷框內(nèi)為()A. B. C. D.4.若函數(shù)為自然對(duì)數(shù)的底數(shù))在區(qū)間上不是單調(diào)函數(shù),則實(shí)數(shù)的取值范圍是()A. B. C. D.5.在中,,,,點(diǎn)滿足,則等于()A.10 B.9 C.8 D.76.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結(jié)論正確的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B7.已知分別為雙曲線的左、右焦點(diǎn),過的直線與雙曲線的左、右兩支分別交于兩點(diǎn),若,則雙曲線的離心率為()A. B.4 C.2 D.8.我國古代數(shù)學(xué)著作《九章算術(shù)》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.1009.已知函數(shù),則方程的實(shí)數(shù)根的個(gè)數(shù)是()A. B. C. D.10.已知數(shù)列,,,…,是首項(xiàng)為8,公比為得等比數(shù)列,則等于()A.64 B.32 C.2 D.411.如圖所示,直三棱柱的高為4,底面邊長分別是5,12,13,當(dāng)球與上底面三條棱都相切時(shí)球心到下底面距離為8,則球的體積為()A.1605π3 B.64212.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點(diǎn),則異面直線與所成角的余弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一個(gè)算法的偽代碼如圖所示,執(zhí)行此算法,最后輸出的T的值為________.14.已知四棱錐,底面四邊形為正方形,,四棱錐的體積為,在該四棱錐內(nèi)放置一球,則球體積的最大值為_________.15.已知是同一球面上的四個(gè)點(diǎn),其中平面,是正三角形,,則該球的表面積為______.16.已知,滿足約束條件則的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線上的任意一點(diǎn)到直線的距離比點(diǎn)到點(diǎn)的距離小1.(1)求動(dòng)點(diǎn)的軌跡的方程;(2)若點(diǎn)是圓上一動(dòng)點(diǎn),過點(diǎn)作曲線的兩條切線,切點(diǎn)分別為,求直線斜率的取值范圍.18.(12分)已知函數(shù).(1)設(shè),若存在兩個(gè)極值點(diǎn),,且,求證:;(2)設(shè),在不單調(diào),且恒成立,求的取值范圍.(為自然對(duì)數(shù)的底數(shù)).19.(12分)設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則的模為______.20.(12分)已知函數(shù),(其中,).(1)求函數(shù)的最小值.(2)若,求證:.21.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若對(duì)任意都有,求實(shí)數(shù)的取值范圍.22.(10分)在中,角A,B,C的對(duì)邊分別為a,b,c,且.(1)求B;(2)若的面積為,周長為8,求b.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
①利用真假表來判斷,②考慮內(nèi)角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關(guān)系判斷.【詳解】若“且”為假命題,則﹑中至少有一個(gè)是假命題,故①錯(cuò)誤;當(dāng)內(nèi)角為時(shí),不是象限角,故②錯(cuò)誤;由特稱命題的否定是全稱命題知③正確;因?yàn)?,所以,所以“”是“”的必要條件,故④正確.故選:B.【點(diǎn)睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識(shí),是一道基礎(chǔ)題.2、C【解析】
試題分析:由題意得,自習(xí)時(shí)間不少于小時(shí)的頻率為,故自習(xí)時(shí)間不少于小時(shí)的頻率為,故選C.考點(diǎn):頻率分布直方圖及其應(yīng)用.3、C【解析】程序在運(yùn)行過程中各變量值變化如下表:KS是否繼續(xù)循環(huán)循環(huán)前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環(huán)的條件應(yīng)為k>5?本題選擇C選項(xiàng).點(diǎn)睛:使用循環(huán)結(jié)構(gòu)尋數(shù)時(shí),要明確數(shù)字的結(jié)構(gòu)特征,決定循環(huán)的終止條件與數(shù)的結(jié)構(gòu)特征的關(guān)系及循環(huán)次數(shù).尤其是統(tǒng)計(jì)數(shù)時(shí),注意要統(tǒng)計(jì)的數(shù)的出現(xiàn)次數(shù)與循環(huán)次數(shù)的區(qū)別.4、B【解析】
求得的導(dǎo)函數(shù),由此構(gòu)造函數(shù),根據(jù)題意可知在上有變號(hào)零點(diǎn).由此令,利用分離常數(shù)法結(jié)合換元法,求得的取值范圍.【詳解】,設(shè),要使在區(qū)間上不是單調(diào)函數(shù),即在上有變號(hào)零點(diǎn),令,則,令,則問題即在上有零點(diǎn),由于在上遞增,所以的取值范圍是.故選:B【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查方程零點(diǎn)問題的求解策略,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.5、D【解析】
利用已知條件,表示出向量,然后求解向量的數(shù)量積.【詳解】在中,,,,點(diǎn)滿足,可得則==【點(diǎn)睛】本題考查了向量的數(shù)量積運(yùn)算,關(guān)鍵是利用基向量表示所求向量.6、C【解析】試題分析:集合考點(diǎn):集合間的關(guān)系7、A【解析】
由已知得,,由已知比值得,再利用雙曲線的定義可用表示出,,用勾股定理得出的等式,從而得離心率.【詳解】.又,可令,則.設(shè),得,即,解得,∴,,由得,,,該雙曲線的離心率.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是由向量數(shù)量積為0得出垂直關(guān)系,利用雙曲線的定義把雙曲線上的點(diǎn)到焦點(diǎn)的距離都用表示出來,從而再由勾股定理建立的關(guān)系.8、B【解析】
根據(jù)程序框圖中程序的功能,可以列方程計(jì)算.【詳解】由題意,.故選:B.【點(diǎn)睛】本題考查程序框圖,讀懂程序的功能是解題關(guān)鍵.9、D【解析】
畫出函數(shù),將方程看作交點(diǎn)個(gè)數(shù),運(yùn)用圖象判斷根的個(gè)數(shù).【詳解】畫出函數(shù)令有兩解,則分別有3個(gè),2個(gè)解,故方程的實(shí)數(shù)根的個(gè)數(shù)是3+2=5個(gè)故選:D【點(diǎn)睛】本題綜合考查了函數(shù)的圖象的運(yùn)用,分類思想的運(yùn)用,數(shù)學(xué)結(jié)合的思想判斷方程的根,難度較大,屬于中檔題.10、A【解析】
根據(jù)題意依次計(jì)算得到答案.【詳解】根據(jù)題意知:,,故,,.故選:.【點(diǎn)睛】本題考查了數(shù)列值的計(jì)算,意在考查學(xué)生的計(jì)算能力.11、A【解析】
設(shè)球心為O,三棱柱的上底面ΔA1B1C1的內(nèi)切圓的圓心為O1,該圓與邊B【詳解】如圖,設(shè)三棱柱為ABC-A1B1C所以底面ΔA1B1C1為斜邊是A1C1則圓O1的半徑為O設(shè)球心為O,則由球的幾何知識(shí)得ΔOO1M所以O(shè)M=2即球O的半徑為25所以球O的體積為43故選A.【點(diǎn)睛】本題考查與球有關(guān)的組合體的問題,解答本題的關(guān)鍵有兩個(gè):(1)構(gòu)造以球半徑R、球心到小圓圓心的距離d和小圓半徑r為三邊的直角三角形,并在此三角形內(nèi)求出球的半徑,這是解決與球有關(guān)的問題時(shí)常用的方法.(2)若直角三角形的兩直角邊為a,b,斜邊為c,則該直角三角形內(nèi)切圓的半徑r=a+b-c12、B【解析】
由題意建立空間直角坐標(biāo)系,表示出各點(diǎn)坐標(biāo)后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標(biāo)系,由題意:,,,,,為的中點(diǎn),.,,,異面直線與所成角的余弦值為即為.故選:B.【點(diǎn)睛】本題考查了空間向量的應(yīng)用,考查了空間想象能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由程序中的變量、各語句的作用,結(jié)合流程圖所給的順序,模擬程序的運(yùn)行,即可得到答案.【詳解】根據(jù)題中的程序框圖可得:,執(zhí)行循環(huán)體,,不滿足條件,執(zhí)行循環(huán)體,,此時(shí),滿足條件,退出循環(huán),輸出的值為.故答案為:【點(diǎn)睛】本題主要考查了程序和算法,依次寫出每次循環(huán)得到的,的值是解題的關(guān)鍵,屬于基本知識(shí)的考查.14、【解析】
由題知,該四棱錐為正四棱錐,作出該正四棱錐的高和斜高,連接,則球心O必在的邊上,設(shè),由球與四棱錐的內(nèi)切關(guān)系可知,設(shè),用和表示四棱錐的體積,解得和的關(guān)系,進(jìn)而表示出內(nèi)切球的半徑,并求出半徑的最大值,進(jìn)而求出球的體積的最大值.【詳解】設(shè),,由球O內(nèi)切于四棱錐可知,,,則,球O的半徑,,,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,此時(shí).故答案為:.【點(diǎn)睛】本題考查了棱錐的體積問題,內(nèi)切球問題,考查空間想象能力,屬于較難的填空壓軸題.15、【解析】
求得等邊三角形的外接圓半徑,利用勾股定理求得三棱錐外接球的半徑,進(jìn)而求得外接球的表面積.【詳解】設(shè)是等邊三角形的外心,則球心在其正上方處.設(shè),由正弦定理得.所以得三棱錐外接球的半徑,所以外接球的表面積為.故答案為:【點(diǎn)睛】本小題主要考查幾何體外接球表面積的計(jì)算,屬于基礎(chǔ)題.16、1【解析】
先畫出約束條件的可行域,根據(jù)平移法判斷出最優(yōu)點(diǎn),代入目標(biāo)函數(shù)的解析式,易可得到目標(biāo)函數(shù)的最大值.【詳解】解:由約束條件得如圖所示的三角形區(qū)域,由于,則,要求的最大值,則求的截距的最小值,顯然當(dāng)平行直線過點(diǎn)時(shí),取得最大值為:.故答案為:1.【點(diǎn)睛】本題考查線性規(guī)劃求最值問題,我們常用幾何法求最值.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)設(shè),根據(jù)題意可得點(diǎn)的軌跡方程滿足的等式,化簡即可求得動(dòng)點(diǎn)的軌跡的方程;(2)設(shè)出切線的斜率分別為,切點(diǎn),,點(diǎn),則可得過點(diǎn)的拋物線的切線方程為,聯(lián)立拋物線方程并化簡,由相切時(shí)可得兩條切線斜率關(guān)系;由拋物線方程求得導(dǎo)函數(shù),并由導(dǎo)數(shù)的幾何意義并代入拋物線方程表示出,可求得,結(jié)合點(diǎn)滿足的方程可得的取值范圍,即可求得的范圍.【詳解】(1)設(shè)點(diǎn),∵點(diǎn)到直線的距離等于,∴,化簡得,∴動(dòng)點(diǎn)的軌跡的方程為.(2)由題意可知,的斜率都存在,分別設(shè)為,切點(diǎn),,設(shè)點(diǎn),過點(diǎn)的拋物線的切線方程為,聯(lián)立,化簡可得,∴,即,∴,.由,求得導(dǎo)函數(shù),∴,,,∴,因?yàn)辄c(diǎn)滿足,由圓的性質(zhì)可得,∴,即直線斜率的取值范圍為.【點(diǎn)睛】本題考查了動(dòng)點(diǎn)軌跡方程的求法,直線與拋物線相切的性質(zhì)及應(yīng)用,導(dǎo)函數(shù)的幾何意義及應(yīng)用,點(diǎn)和圓位置關(guān)系求參數(shù)的取值范圍,屬于中檔題.18、(1)證明見解析;(2).【解析】
(1)先求出,又由可判斷出在上單調(diào)遞減,故,令,記,利用導(dǎo)數(shù)求出的最小值即可;(2)由在上不單調(diào)轉(zhuǎn)化為在上有解,可得,令,分類討論求的最大值,再求解即可.【詳解】(1)已知,,由可得,又由,知在上單調(diào)遞減,令,記,則在上單調(diào)遞增;,在上單調(diào)遞增;,(2),,在上不單調(diào),在上有正有負(fù),在上有解,,,恒成立,記,則,記,,在上單調(diào)增,在上單調(diào)減.于是知(i)當(dāng)即時(shí),恒成立,在上單調(diào)增,,,.(ii)當(dāng)時(shí),,故不滿足題意.綜上所述,【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的綜合應(yīng)用,考查了分類討論,轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運(yùn)算求解能力.19、1【解析】
整理已知利用復(fù)數(shù)的除法運(yùn)算方式計(jì)算,再由求模公式得答案.【詳解】因?yàn)?,即所以的模?故答案為:1【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算與求模,屬于基礎(chǔ)題.20、(1).(2)答案見解析【解析】
(1)利用絕對(duì)值不等式的性質(zhì)即可求得最小值;(2)利用分析法,只需證明,兩邊平方后結(jié)合即可得證.【詳解】(1),當(dāng)且僅當(dāng)時(shí)取等號(hào),∴的最小值;(2)證明:依題意,,要證,即證,即證,即證,即證,又可知,成立,故原不等式成立.【點(diǎn)睛】本題考查用絕對(duì)值三角不等式求最值,考查用分析法證明不等式,在不等式不易證明時(shí),可通過執(zhí)果索因的方法尋找結(jié)論成立的充分條件,完成證明,這就是分析法.21、(1)(2)【解析】
利用零點(diǎn)分區(qū)間法,去掉絕對(duì)值符號(hào)分組討論求并集,對(duì)恒成立,則,由三角不等式,得求解【詳解】解:當(dāng)時(shí),不等式即為,可得或或,解得或或,則原不等式的解集為若對(duì)任意、都有,即為,由,當(dāng)取得等號(hào),則,由,可得,則的取值范圍是【點(diǎn)睛】本題考查含有兩個(gè)絕對(duì)值符號(hào)的不等式解法及利用三角不等式解恒成立問題.(1)含有兩個(gè)絕對(duì)值符號(hào)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 綜合物流服務(wù)外包合同
- 2024年無抵押擔(dān)保企業(yè)生產(chǎn)線擴(kuò)建借款合同3篇
- 2024-2030年黑色金屬搬遷改造項(xiàng)目可行性研究報(bào)告
- 2024-2030年酚醛復(fù)合板搬遷改造項(xiàng)目可行性研究報(bào)告
- 2024-2030年虛擬服務(wù)器搬遷改造項(xiàng)目可行性研究報(bào)告
- 2024-2030年電鍍炭公司技術(shù)改造及擴(kuò)產(chǎn)項(xiàng)目可行性研究報(bào)告
- 2024-2030年版中國煙花爆竹行業(yè)市場競爭態(tài)勢及發(fā)展策略分析報(bào)告
- 2024-2030年版中國制糖工業(yè)市場營銷模式及未來發(fā)展?jié)摿Ψ治鰣?bào)告
- 2024-2030年煤合成氣公司技術(shù)改造及擴(kuò)產(chǎn)項(xiàng)目可行性研究報(bào)告
- 2024-2030年瀝青灑布車搬遷改造項(xiàng)目可行性研究報(bào)告
- 2024年度共享辦公空間租賃合同2篇
- 《血?dú)夥治龅呐R床應(yīng)》課件
- 2024年四級(jí)品酒師資格認(rèn)證考試題庫(濃縮400題)
- 國家電投《新能源電站單位千瓦造價(jià)標(biāo)準(zhǔn)值(2024)》
- 小兒全麻患者術(shù)后護(hù)理
- GB 1886.342-2021食品安全國家標(biāo)準(zhǔn)食品添加劑硫酸鋁銨
- 在全市油氣輸送管道安全隱患整治工作領(lǐng)導(dǎo)小組第一次會(huì)議上的講話摘要
- 小學(xué)英語后進(jìn)生的轉(zhuǎn)化工作總結(jié)3頁
- 定喘神奇丹_辨證錄卷四_方劑樹
- 不知不覺也是牛仔元老了轉(zhuǎn)一篇日牛知識(shí)貼.doc
- 六年級(jí)上冊(cè)數(shù)學(xué)單元測試第七單元檢測卷∣蘇教版
評(píng)論
0/150
提交評(píng)論