2023屆青海省西寧市市級(jí)名校中考數(shù)學(xué)最后一模試卷含解析_第1頁(yè)
2023屆青海省西寧市市級(jí)名校中考數(shù)學(xué)最后一模試卷含解析_第2頁(yè)
2023屆青海省西寧市市級(jí)名校中考數(shù)學(xué)最后一模試卷含解析_第3頁(yè)
2023屆青海省西寧市市級(jí)名校中考數(shù)學(xué)最后一模試卷含解析_第4頁(yè)
2023屆青海省西寧市市級(jí)名校中考數(shù)學(xué)最后一模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年中考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.在下列網(wǎng)格中,小正方形的邊長(zhǎng)為1,點(diǎn)A、B、O都在格點(diǎn)上,則的正弦值是A. B. C. D.2.如圖,AB∥CD,直線EF與AB、CD分別相交于E、F,AM⊥EF于點(diǎn)M,若∠EAM=10°,那么∠CFE等于()A.80° B.85° C.100° D.170°3.如圖,直角三角形ABC中,∠C=90°,AC=2,AB=4,分別以AC、BC為直徑作半圓,則圖中陰影部分的面積為()A.2π﹣ B.π+ C.π+2 D.2π﹣24.下列事件中為必然事件的是()A.打開(kāi)電視機(jī),正在播放茂名新聞 B.早晨的太陽(yáng)從東方升起C.隨機(jī)擲一枚硬幣,落地后正面朝上 D.下雨后,天空出現(xiàn)彩虹5.下列四個(gè)圖形分別是四屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),其中屬于中心對(duì)稱圖形的有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)6.已知在四邊形ABCD中,AD//BC,對(duì)角線AC、BD交于點(diǎn)O,且AC=BD,下列四個(gè)命題中真命題是()A.若AB=CD,則四邊形ABCD一定是等腰梯形;B.若∠DBC=∠ACB,則四邊形ABCD一定是等腰梯形;C.若,則四邊形ABCD一定是矩形;D.若AC⊥BD且AO=OD,則四邊形ABCD一定是正方形.7.廣西2017年參加高考的學(xué)生約有365000人,將365000這個(gè)數(shù)用科學(xué)記數(shù)法表示為()A.3.65×103 B.3.65×104 C.3.65×105 D.3.65×1068.某工廠第二季度的產(chǎn)值比第一季度的產(chǎn)值增長(zhǎng)了x%,第三季度的產(chǎn)值又比第二季度的產(chǎn)值增長(zhǎng)了x%,則第三季度的產(chǎn)值比第一季度的產(chǎn)值增長(zhǎng)了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%9.如圖,已知點(diǎn)E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.8010.的值是A.±3 B.3 C.9 D.81二、填空題(共7小題,每小題3分,滿分21分)11.如圖,正方形ABCD的邊長(zhǎng)為6,E,F(xiàn)是對(duì)角線BD上的兩個(gè)動(dòng)點(diǎn),且EF=,連接CE,CF,則△CEF周長(zhǎng)的最小值為_(kāi)____.12.使有意義的的取值范圍是__________.13.已知拋物線的部分圖象如圖所示,根據(jù)函數(shù)圖象可知,當(dāng)y>0時(shí),x的取值范圍是__.14.已知:如圖,AB是⊙O的直徑,弦EF⊥AB于點(diǎn)D,如果EF=8,AD=2,則⊙O半徑的長(zhǎng)是_____.15.方程3x(x-1)=2(x-1)的根是16.已知扇形的弧長(zhǎng)為2π,圓心角為60°,則它的半徑為_(kāi)_______.17.一個(gè)不透明的袋中裝有除顏色外均相同的8個(gè)黑球、4個(gè)白球和若干個(gè)紅球.每次搖勻后隨機(jī)摸出一個(gè)球,記下顏色后再放回袋中,通過(guò)大量重復(fù)摸球試驗(yàn)后,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定于0.4,由此可估計(jì)袋中約有紅球_____個(gè).三、解答題(共7小題,滿分69分)18.(10分)如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)的圖象交于A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,已知OA=,tan∠AOC=(1)求a,k的值及點(diǎn)B的坐標(biāo);(2)觀察圖象,請(qǐng)直接寫(xiě)出不等式ax﹣1≥的解集;(3)在y軸上存在一點(diǎn)P,使得△PDC與△ODC相似,請(qǐng)你求出P點(diǎn)的坐標(biāo).19.(5分)如圖,在平行四邊形ABCD中,BD為對(duì)角線,AE⊥BD,CF⊥BD,垂足分別為E、F,連接AF、CE,求證:AF=CE.20.(8分)已知頂點(diǎn)為A的拋物線y=a(x-)2-2經(jīng)過(guò)點(diǎn)B(-,2),點(diǎn)C(,2).(1)求拋物線的表達(dá)式;(2)如圖1,直線AB與x軸相交于點(diǎn)M,與y軸相交于點(diǎn)E,拋物線與y軸相交于點(diǎn)F,在直線AB上有一點(diǎn)P,若∠OPM=∠MAF,求△POE的面積;(3)如圖2,點(diǎn)Q是折線A-B-C上一點(diǎn),過(guò)點(diǎn)Q作QN∥y軸,過(guò)點(diǎn)E作EN∥x軸,直線QN與直線EN相交于點(diǎn)N,連接QE,將△QEN沿QE翻折得到△QEN′,若點(diǎn)N′落在x軸上,請(qǐng)直接寫(xiě)出Q點(diǎn)的坐標(biāo).21.(10分)圖1是某市2009年4月5日至14日每天最低氣溫的折線統(tǒng)計(jì)圖.圖2是該市2007年4月5日至14日每天最低氣溫的頻數(shù)分布直方圖,根據(jù)圖1提供的信息,補(bǔ)全圖2中頻數(shù)分布直方圖;在這10天中,最低氣溫的眾數(shù)是____,中位數(shù)是____,方差是_____.請(qǐng)用扇形圖表示出這十天里溫度的分布情況.22.(10分)如圖,在一筆直的海岸線l上有A、B兩個(gè)碼頭,A在B的正東方向,一艘小船從A碼頭沿它的北偏西60°的方向行駛了20海里到達(dá)點(diǎn)P處,此時(shí)從B碼頭測(cè)得小船在它的北偏東45°的方向.求此時(shí)小船到B碼頭的距離(即BP的長(zhǎng))和A、B兩個(gè)碼頭間的距離(結(jié)果都保留根號(hào)).23.(12分)先化簡(jiǎn),再計(jì)算:其中.24.(14分)如圖,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,點(diǎn)M為邊BC上一動(dòng)點(diǎn),聯(lián)結(jié)AM并延長(zhǎng)交射線DC于點(diǎn)F,作∠FAE=45°交射線BC于點(diǎn)E、交邊DCN于點(diǎn)N,聯(lián)結(jié)EF.(1)當(dāng)CM:CB=1:4時(shí),求CF的長(zhǎng).(2)設(shè)CM=x,CE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出定義域.(3)當(dāng)△ABM∽△EFN時(shí),求CM的長(zhǎng).

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】

由題意根據(jù)勾股定理求出OA,進(jìn)而根據(jù)正弦的定義進(jìn)行分析解答即可.【詳解】解:由題意得,,,由勾股定理得,,.故選:A.【點(diǎn)睛】本題考查的是銳角三角函數(shù)的定義,在直角三角形中,銳角的正弦為對(duì)邊比斜邊,余弦為鄰邊比斜邊,正切為對(duì)邊比鄰邊.2、C【解析】

根據(jù)題意,求出∠AEM,再根據(jù)AB∥CD,得出∠AEM與∠CFE互補(bǔ),求出∠CFE.【詳解】∵AM⊥EF,∠EAM=10°∴∠AEM=80°又∵AB∥CD∴∠AEM+∠CFE=180°∴∠CFE=100°.故選C.【點(diǎn)睛】本題考查三角形內(nèi)角和與兩條直線平行內(nèi)錯(cuò)角相等.3、D【解析】分析:觀察圖形可知,陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC,然后根據(jù)扇形面積公式和三角形面積公式計(jì)算即可.詳解:連接CD.∵∠C=90°,AC=2,AB=4,∴BC==2.∴陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC==.故選:D.點(diǎn)睛:本題考查了勾股定理,圓的面積公式,三角形的面積公式及割補(bǔ)法求圖形的面積,根據(jù)圖形判斷出陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC是解答本題的關(guān)鍵.4、B【解析】分析:根據(jù)必然事件、不可能事件、隨機(jī)事件的概念可區(qū)別各類事件:A、打開(kāi)電視機(jī),正在播放茂名新聞,可能發(fā)生,也可能不發(fā)生,是隨機(jī)事件,故本選項(xiàng)錯(cuò)誤;B、早晨的太陽(yáng)從東方升起,是必然事件,故本選項(xiàng)正確;C、隨機(jī)擲一枚硬幣,落地后可能正面朝上,也可能背面朝上,故本選項(xiàng)錯(cuò)誤;D、下雨后,天空出現(xiàn)彩虹,可能發(fā)生,也可能不發(fā)生,故本選項(xiàng)錯(cuò)誤.故選B.5、B【解析】

解:根據(jù)中心對(duì)稱的概念可得第一個(gè)圖形是中心對(duì)稱圖形,第二個(gè)圖形不是中心對(duì)稱圖形,第三個(gè)圖形是中心對(duì)稱圖形,第四個(gè)圖形不是中心對(duì)稱圖形,所以,中心對(duì)稱圖有2個(gè).故選B.【點(diǎn)睛】本題考查中心對(duì)稱圖形的識(shí)別,掌握中心對(duì)稱圖形的概念是本題的解題關(guān)鍵.6、C【解析】A、因?yàn)闈M足本選項(xiàng)條件的四邊形ABCD有可能是矩形,因此A中命題不一定成立;B、因?yàn)闈M足本選項(xiàng)條件的四邊形ABCD有可能是矩形,因此B中命題不一定成立;C、因?yàn)橛山Y(jié)合AO+CO=AC=BD=BO+OD可證得AO=CO,BO=DO,由此即可證得此時(shí)四邊形ABCD是矩形,因此C中命題一定成立;D、因?yàn)闈M足本選項(xiàng)條件的四邊形ABCD有可能是等腰梯形,由此D中命題不一定成立.故選C.7、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】解:將365000這個(gè)數(shù)用科學(xué)記數(shù)法表示為3.65×1.故選C.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.8、D【解析】設(shè)第一季度的原產(chǎn)值為a,則第二季度的產(chǎn)值為,第三季度的產(chǎn)值為,則則第三季度的產(chǎn)值比第一季度的產(chǎn)值增長(zhǎng)了故選D.9、C【解析】試題解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選C.考點(diǎn):勾股定理.10、C【解析】試題解析:∵∴的值是3故選C.二、填空題(共7小題,每小題3分,滿分21分)11、2+4【解析】

如圖作CH∥BD,使得CH=EF=2,連接AH交BD由F,則△CEF的周長(zhǎng)最?。驹斀狻咳鐖D作CH∥BD,使得CH=EF=2,連接AH交BD由F,則△CEF的周長(zhǎng)最?。逤H=EF,CH∥EF,∴四邊形EFHC是平行四邊形,∴EC=FH,∵FA=FC,∴EC+CF=FH+AF=AH,∵四邊形ABCD是正方形,∴AC⊥BD,∵CH∥DB,∴AC⊥CH,∴∠ACH=90°,在Rt△ACH中,AH==4,∴△EFC的周長(zhǎng)的最小值=2+4,故答案為:2+4.【點(diǎn)睛】本題考查軸對(duì)稱﹣?zhàn)疃虇?wèn)題,正方形的性質(zhì)、勾股定理、平行四邊形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用軸對(duì)稱解決最短問(wèn)題.12、【解析】

根據(jù)二次根式的被開(kāi)方數(shù)為非負(fù)數(shù)求解即可.【詳解】由題意可得:,解得:.所以答案為.【點(diǎn)睛】本題主要考查了二次根式的性質(zhì),熟練掌握相關(guān)概念是解題關(guān)鍵.13、【解析】

根據(jù)拋物線的對(duì)稱軸以及拋物線與x軸的一個(gè)交點(diǎn),確定拋物線與x軸的另一個(gè)交點(diǎn),再結(jié)合圖象即可得出答案.【詳解】解:根據(jù)二次函數(shù)圖象可知:拋物線的對(duì)稱軸為直線,與x軸的一個(gè)交點(diǎn)為(-1,0),∴拋物線與x軸的另一個(gè)交點(diǎn)為(3,0),結(jié)合圖象可知,當(dāng)y>0時(shí),即x軸上方的圖象,對(duì)應(yīng)的x的取值范圍是,故答案為:.【點(diǎn)睛】本題考查了二次函數(shù)與不等式的問(wèn)題,解題的關(guān)鍵是通過(guò)圖象確定拋物線與x軸的另一個(gè)交點(diǎn),并熟悉二次函數(shù)與不等式的關(guān)系.14、1.【解析】試題解析:連接OE,如下圖所示,則:OE=OA=R,∵AB是⊙O的直徑,弦EF⊥AB,∴ED=DF=4,∵OD=OA-AD,∴OD=R-2,在Rt△ODE中,由勾股定理可得:OE2=OD2+ED2,∴R2=(R-2)2+42,∴R=1.考點(diǎn):1.垂徑定理;2.解直角三角形.15、x1=1,x2=-.【解析】試題解析:3x(x-1)=2(x-1)3x(x-1)-2(x-1)=0(3x-2)(x-1)=03x-2=0,x-1=0解得:x1=1,x2=-.考點(diǎn):解一元二次方程---因式分解法.16、6.【解析】分析:設(shè)扇形的半徑為r,根據(jù)扇形的面積公式及扇形的面積列出方程,求解即可.詳解:設(shè)扇形的半徑為r,根據(jù)題意得:60πr解得:r=6故答案為6.點(diǎn)睛:此題考查弧長(zhǎng)公式,關(guān)鍵是根據(jù)弧長(zhǎng)公式解答.17、8【解析】試題分析:設(shè)紅球有x個(gè),根據(jù)概率公式可得,解得:x=8.考點(diǎn):概率.三、解答題(共7小題,滿分69分)18、(1)a=,k=3,B(-,-2)(2)﹣≤x<0或x≥3;(3)(0,)或(0,0)【解析】

1)過(guò)A作AE⊥x軸,交x軸于點(diǎn)E,在Rt△AOE中,根據(jù)tan∠AOC的值,設(shè)AE=x,得到OE=3x,再由OA的長(zhǎng),利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出A坐標(biāo),將A坐標(biāo)代入一次函數(shù)解析式求出a的值,代入反比例解析式求出k的值,聯(lián)立一次函數(shù)與反比例函數(shù)解析式求出B的坐標(biāo);(2)由A與B交點(diǎn)橫坐標(biāo),根據(jù)函數(shù)圖象確定出所求不等式的解集即可;(3)顯然P與O重合時(shí),滿足△PDC與△ODC相似;當(dāng)PC⊥CD,即∠PCD=時(shí),滿足三角形PDC與三角形CDO相等,利用同角的余角相等得到一對(duì)角相等,再由一對(duì)直角相等得到三角形PCO與三角形CDO相似,由相似得比例,根據(jù)OD,OC的長(zhǎng)求出OP的長(zhǎng),即可確定出P的坐標(biāo).【詳解】解:(1)過(guò)A作AE⊥x軸,交x軸于點(diǎn)E,在Rt△AOE中,OA=,tan∠AOC=,設(shè)AE=x,則OE=3x,根據(jù)勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=﹣1(舍去),∴OE=3,AE=1,即A(3,1),將A坐標(biāo)代入一次函數(shù)y=ax﹣1中,得:1=3a﹣1,即a=,將A坐標(biāo)代入反比例解析式得:1=,即k=3,聯(lián)立一次函數(shù)與反比例解析式得:,消去y得:x﹣1=,解得:x=﹣或x=3,將x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);(2)由A(3,1),B(﹣,﹣2),根據(jù)圖象得:不等式x﹣1≥的解集為﹣≤x<0或x≥3;(3)顯然P與O重合時(shí),△PDC∽△ODC;當(dāng)PC⊥CD,即∠PCD=90°時(shí),∠PCO+∠DCO=90°,∵∠PCD=∠COD=90°,∠PCD=∠CDO,∴△PDC∽△CDO,∵∠PCO+∠CPO=90°,∴∠DCO=∠CPO,∵∠POC=∠COD=90°,∴△PCO∽△CDO,∴=,對(duì)于一次函數(shù)解析式y(tǒng)=x﹣1,令x=0,得到y(tǒng)=﹣1;令y=0,得到x=,∴C(,0),D(0,﹣1),即OC=,OD=1,∴=,即OP=,此時(shí)P坐標(biāo)為(0,),綜上,滿足題意P的坐標(biāo)為(0,)或(0,0).【點(diǎn)睛】此題屬于反比例函數(shù)綜合題,涉及的知識(shí)有:待定系數(shù)法確定函數(shù)解析式,一次函數(shù)與反比例函數(shù)的交點(diǎn)問(wèn)題,坐標(biāo)與圖形性質(zhì),勾股定理,銳角三角函數(shù)定義,相似三角形的判定與性質(zhì),利用了數(shù)形結(jié)合的思想,熟練運(yùn)用數(shù)形結(jié)合思想是解題的關(guān)鍵.19、見(jiàn)解析【解析】

易證△ABE≌△CDF,得AE=CF,即可證得△AEF≌△CFE,即可得證.【詳解】在平行四邊形ABCD中,AB∥CD,AB=CD∴∠ABE=∠CDF,又AE⊥BD,CF⊥BD∴△ABE≌△CDF(AAS),∴AE=CF又∠AEF=∠CFE,EF=FE,∴△AEF≌△CFE(SAS)∴AF=CE.【點(diǎn)睛】此題主要考查平行四邊形的性質(zhì)與全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟知平行四邊形的性質(zhì)定理.20、(1)y=(x-)2-2;(2)△POE的面積為或;(3)點(diǎn)Q的坐標(biāo)為(-,)或(-,2)或(,2).【解析】

(1)將點(diǎn)B坐標(biāo)代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,據(jù)此證△OPE∽△FAE得===,即OP=FA,設(shè)點(diǎn)P(t,-2t-1),列出關(guān)于t的方程解之可得;(3)分點(diǎn)Q在AB上運(yùn)動(dòng)、點(diǎn)Q在BC上運(yùn)動(dòng)且Q在y軸左側(cè)、點(diǎn)Q在BC上運(yùn)動(dòng)且點(diǎn)Q在y軸右側(cè)這三種情況分類討論即可得.【詳解】解:(1)把點(diǎn)B(-,2)代入y=a(x-)2-2,解得a=1,∴拋物線的表達(dá)式為y=(x-)2-2,(2)由y=(x-)2-2知A(,-2),設(shè)直線AB表達(dá)式為y=kx+b,代入點(diǎn)A,B的坐標(biāo)得,解得,∴直線AB的表達(dá)式為y=-2x-1,易求E(0,-1),F(xiàn)(0,-),M(-,0),若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,∴OP=FA=,設(shè)點(diǎn)P(t,-2t-1),則,解得t1=-,t2=-,由對(duì)稱性知,當(dāng)t1=-時(shí),也滿足∠OPM=∠MAF,∴t1=-,t2=-都滿足條件,∵△POE的面積=OE·|t|,∴△POE的面積為或;(3)如圖,若點(diǎn)Q在AB上運(yùn)動(dòng),過(guò)N′作直線RS∥y軸,交QR于點(diǎn)R,交NE的延長(zhǎng)線于點(diǎn)S,設(shè)Q(a,-2a-1),則NE=-a,QN=-2a.由翻折知QN′=QN=-2a,N′E=NE=-a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴==,即===2,∴QR=2,ES=,由NE+ES=NS=QR可得-a+=2,解得a=-,∴Q(-,),如圖,若點(diǎn)Q在BC上運(yùn)動(dòng),且Q在y軸左側(cè),過(guò)N′作直線RS∥y軸,交BC于點(diǎn)R,交NE的延長(zhǎng)線于點(diǎn)S.設(shè)NE=a,則N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=,SE=-a.在Rt△SEN′中,(-a)2+12=a2,解得a=,∴Q(-,2),如圖,若點(diǎn)Q在BC上運(yùn)動(dòng),且點(diǎn)Q在y軸右側(cè),過(guò)N′作直線RS∥y軸,交BC于點(diǎn)R,交NE的延長(zhǎng)線于點(diǎn)S.設(shè)NE=a,則N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=,SE=-a.在Rt△SEN′中,(-a)2+12=a2,解得a=,∴Q(,2).綜上,點(diǎn)Q的坐標(biāo)為(-,)或(-,2)或(,2).【點(diǎn)睛】本題主要考查二次函數(shù)的綜合問(wèn)題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、相似三角形的判定與性質(zhì)、翻折變換的性質(zhì)及勾股定理等知識(shí)點(diǎn).21、(1)作圖見(jiàn)解析;(2)7,7.5,2.8;(3)見(jiàn)解析.【解析】

(1)根據(jù)圖1找出8、9、10℃的天數(shù),然后補(bǔ)全統(tǒng)計(jì)圖即可;(2)根據(jù)眾數(shù)的定義,找出出現(xiàn)頻率最高的溫度;按照從低到高排列,求出第5、6兩個(gè)溫度的平均數(shù)即為中位數(shù);先求出平均數(shù),再根據(jù)方差的定義列式進(jìn)行計(jì)算即可得解;(3)求出7、8、9、10、11℃的天數(shù)在扇形統(tǒng)計(jì)圖中所占的度數(shù),然后作出扇形統(tǒng)計(jì)圖即可.【詳解】(1)由圖1可知,8℃有2天,9℃有0天,10℃有2天,補(bǔ)全統(tǒng)計(jì)圖如圖;(2)根據(jù)條形統(tǒng)計(jì)圖,7℃出現(xiàn)的頻率最高,為3天,所以,眾數(shù)是7;按照溫度從小到大的順序排列,第5個(gè)溫度為7℃,第6個(gè)溫度為8℃,所以,中位數(shù)為(7+8)=7.5;平均數(shù)為(6×2+7×3+8×2+10×2+11)=×80=8,所以,方差=[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],=(8+3+0+8+9),=×28,=2.8;(3)6℃的度數(shù),×360°=72°,7℃的度數(shù),×360°=108°,8℃的度數(shù),×360°=72°,10℃的度數(shù),×360°=72°,11℃的度數(shù),×360°=36°,作出扇形統(tǒng)計(jì)圖如圖所示.【點(diǎn)睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計(jì)圖獲取信息的能力.同時(shí)考查中位數(shù)、眾數(shù)的求法:給定n個(gè)數(shù)據(jù),按從小到大排序,如果n為奇數(shù),位于中間的那個(gè)數(shù)就是中位數(shù);如果n為偶數(shù),位于中間兩個(gè)數(shù)的平均數(shù)就是中位數(shù).任何一組數(shù)據(jù),都一定存在中位數(shù)的,但中位數(shù)不一定是這組數(shù)據(jù)量的數(shù).給定一組數(shù)據(jù),出現(xiàn)次數(shù)最多的那個(gè)數(shù),稱為這組數(shù)據(jù)的眾數(shù).22、小船到B碼頭的距離是10海里,A、B兩個(gè)碼頭間的距離是(10+10)海里【解析】試題分析:過(guò)P作PM⊥AB于M,求出∠PBM=45°,∠PAM=30°,求出PM,即可求出BM、AM、BP.試題解析:如圖:過(guò)P作PM⊥AB于M,則∠PMB=∠PMA=90°,∵∠PBM=90°﹣45°=45°,∠PAM=90°﹣60°=30°,AP=20,∴PM=AP=10,AM=PM=,∴∠BPM=∠PBM=45°,∴PM=BM=10,AB=AM+MB=,∴BP==,即小船到B碼頭的距離是海里,A、B兩個(gè)碼頭間的距離是()海里.考點(diǎn):解直角三角形的應(yīng)用-方向角問(wèn)題.23、;【解析】

根據(jù)分式的化簡(jiǎn)求值,先把分子分母因式分解,再算乘除,通分后計(jì)算減法,約分化簡(jiǎn),最后代入求值即可.【詳解】解:====當(dāng)時(shí),原式=.【點(diǎn)睛】此題主要考查了分式的化簡(jiǎn)求值,把分式的除法化為乘法,然后約分是解題關(guān)鍵.24、(1)CF=

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論