2023屆內(nèi)蒙古烏海市海南區(qū)市級名校畢業(yè)升學考試模擬卷數(shù)學卷含解析_第1頁
2023屆內(nèi)蒙古烏海市海南區(qū)市級名校畢業(yè)升學考試模擬卷數(shù)學卷含解析_第2頁
2023屆內(nèi)蒙古烏海市海南區(qū)市級名校畢業(yè)升學考試模擬卷數(shù)學卷含解析_第3頁
2023屆內(nèi)蒙古烏海市海南區(qū)市級名校畢業(yè)升學考試模擬卷數(shù)學卷含解析_第4頁
2023屆內(nèi)蒙古烏海市海南區(qū)市級名校畢業(yè)升學考試模擬卷數(shù)學卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.一個幾何體的三視圖如圖所示,則該幾何體的表面積是()A.24+2π B.16+4π C.16+8π D.16+12π2.拋物線的頂點坐標是()A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)3.下列圖形中,周長不是32m的圖形是()A. B. C. D.4.如圖,四邊形ABCD是邊長為1的正方形,動點E、F分別從點C,D出發(fā),以相同速度分別沿CB,DC運動(點E到達C時,兩點同時停止運動).連接AE,BF交于點P,過點P分別作PM∥CD,PN∥BC,則線段MN的長度的最小值為()A. B. C. D.15.在以下三個圖形中,根據(jù)尺規(guī)作圖的痕跡,能判斷射線AD平分∠BAC的是()A.圖2 B.圖1與圖2 C.圖1與圖3 D.圖2與圖36.如圖,已知是的角平分線,是的垂直平分線,,,則的長為()A.6 B.5 C.4 D.7.如圖,△ABC中,∠CAB=65°,在同一平面內(nèi),將△ABC繞點A旋轉到△AED的位置,使得DC∥AB,則∠BAE等于()A.30° B.40° C.50° D.60°8.如圖,△ABC中,AB=4,AC=3,BC=2,將△ABC繞點A順時針旋轉60°得到△AED,則BE的長為()A.5 B.4 C.3 D.29.若二次函數(shù)的圖像與軸有兩個交點,則實數(shù)的取值范圍是()A. B. C. D.10.已知,用尺規(guī)作圖的方法在上確定一點,使,則符合要求的作圖痕跡是()A. B.C. D.11.如圖,△ABC中,D、E分別為AB、AC的中點,已知△ADE的面積為1,那么△ABC的面積是()A.2 B.3 C.4 D.512.如圖,立體圖形的俯視圖是A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.的算術平方根是_____.14.內(nèi)接于圓,設,圓的半徑為,則所對的劣弧長為_____(用含的代數(shù)式表示).15.如圖,點O是矩形紙片ABCD的對稱中心,E是BC上一點,將紙片沿AE折疊后,點B恰好與點O重合.若BE=3,則折痕AE的長為____.16.對于實數(shù)x,我們規(guī)定[x]表示不大于x的最大整數(shù),例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,則x的取值范圍是_____.17.如圖,拋物線y=ax2+bx+c與x軸相交于A、B兩點,點A在點B左側,頂點在折線M﹣P﹣N上移動,它們的坐標分別為M(﹣1,4)、P(3,4)、N(3,1).若在拋物線移動過程中,點A橫坐標的最小值為﹣3,則a﹣b+c的最小值是_____.18.小剛家、公交車站、學校在一條筆直的公路旁(小剛家、學校到這條公路的距離忽略不計).一天,小剛從家出發(fā)去上學,沿這條公路步行到公交站恰好乘上一輛公交車,公交車沿這條公路勻速行駛,小剛下車時發(fā)現(xiàn)還有4分鐘上課,于是他沿著這條公路跑步趕到學校(上、下車時間忽略不計),小剛與學校的距離s(單位:米)與他所用的時間t(單位:分鐘)之間的函數(shù)關系如圖所示.已知小剛從家出發(fā)7分鐘時與家的距離是1200米,從上公交車到他到達學校共用10分鐘.下列說法:①公交車的速度為400米/分鐘;②小剛從家出發(fā)5分鐘時乘上公交車;③小剛下公交車后跑向?qū)W校的速度是100米/分鐘;④小剛上課遲到了1分鐘.其中正確的序號是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)在連接A、B兩市的公路之間有一個機場C,機場大巴由A市駛向機場C,貨車由B市駛向A市,兩車同時出發(fā)勻速行駛,圖中線段、折線分別表示機場大巴、貨車到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關系圖象.直接寫出連接A、B兩市公路的路程以及貨車由B市到達A市所需時間.求機場大巴到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關系式.求機場大巴與貨車相遇地到機場C的路程.20.(6分)如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為的中點,作DE⊥AC,交AB的延長線于點F,連接DA.求證:EF為半圓O的切線;若DA=DF=6,求陰影區(qū)域的面積.(結果保留根號和π)21.(6分)我校舉行“漢字聽寫”比賽,每位學生聽寫漢字39個,比賽結束后隨機抽查部分學生的聽寫結果,以下是根據(jù)抽查結果繪制的統(tǒng)計圖的一部分.組別正確數(shù)字x人數(shù)A0≤x<810B8≤x<1615C16≤x<2425D24≤x<32mE32≤x<40n根據(jù)以上信息解決下列問題:(1)在統(tǒng)計表中,m=,n=,并補全條形統(tǒng)計圖.(2)扇形統(tǒng)計圖中“C組”所對應的圓心角的度數(shù)是.(3)有三位評委老師,每位老師在E組學生完成學校比賽后,出示“通過”或“淘汰”或“待定”的評定結果.學校規(guī)定:每位學生至少獲得兩位評委老師的“通過”才能代表學校參加鄂州市“漢字聽寫”比賽,請用樹形圖求出E組學生王云參加鄂州市“漢字聽寫”比賽的概率.22.(8分)如圖,△ABC是等邊三角形,AO⊥BC,垂足為點O,⊙O與AC相切于點D,BE⊥AB交AC的延長線于點E,與⊙O相交于G、F兩點.(1)求證:AB與⊙O相切;(2)若等邊三角形ABC的邊長是4,求線段BF的長?23.(8分)王老師對試卷講評課中九年級學生參與的深度與廣度進行評價調(diào)查,每位學生最終評價結果為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項中的一項.評價組隨機抽取了若干名初中學生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:(1)在這次評價中,一共抽查了

名學生;(2)在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在扇形的圓心角度數(shù)為

度;(3)請將頻數(shù)分布直方圖補充完整;(4)如果全市九年級學生有8000名,那么在試卷評講課中,“獨立思考”的九年級學生約有多少人?24.(10分)如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2的⊙C分別交AC,BC于點D、E,得到DE弧.(1)求證:AB為⊙C的切線.(2)求圖中陰影部分的面積.25.(10分)2019年我市在“展銷會”期間,對周邊道路進行限速行駛.道路AB段為監(jiān)測區(qū),C、D為監(jiān)測點(如圖).已知C、D、B在同一條直線上,且,CD=400米,,.求道路AB段的長;(精確到1米)如果AB段限速為60千米/時,一輛車通過AB段的時間為90秒,請判斷該車是否超速,并說明理由.(參考數(shù)據(jù):,,)26.(12分)(1)解方程:=0;(2)解不等式組,并把所得解集表示在數(shù)軸上.27.(12分)某公司10名銷售員,去年完成的銷售額情況如表:銷售額(單位:萬元)34567810銷售員人數(shù)(單位:人)1321111(1)求銷售額的平均數(shù)、眾數(shù)、中位數(shù);(2)今年公司為了調(diào)動員工積極性,提高年銷售額,準備采取超額有獎的措施,請根據(jù)(1)的結果,通過比較,合理確定今年每個銷售員統(tǒng)一的銷售額標準是多少萬元?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據(jù)三視圖知該幾何體是一個半徑為2、高為4的圓柱體的縱向一半,據(jù)此求解可得.【詳解】該幾何體的表面積為2×?π?22+4×4+×2π?2×4=12π+16,故選:D.【點睛】本題主要考查由三視圖判斷幾何體,解題的關鍵是根據(jù)三視圖得出幾何體的形狀及圓柱體的有關計算.2、A【解析】

已知解析式為頂點式,可直接根據(jù)頂點式的坐標特點,求頂點坐標.【詳解】解:y=(x-2)2+3是拋物線的頂點式方程,根據(jù)頂點式的坐標特點可知,頂點坐標為(2,3).故選A.【點睛】此題主要考查了二次函數(shù)的性質(zhì),關鍵是熟記:頂點式y(tǒng)=a(x-h)2+k,頂點坐標是(h,k),對稱軸是x=h.3、B【解析】

根據(jù)所給圖形,分別計算出它們的周長,然后判斷各選項即可.【詳解】A.L=(6+10)×2=32,其周長為32.B.該平行四邊形的一邊長為10,另一邊長大于6,故其周長大于32.C.L=(6+10)×2=32,其周長為32.D.L=(6+10)×2=32,其周長為32.采用排除法即可選出B故選B.【點睛】此題考查多邊形的周長,解題在于掌握計算公式.4、B【解析】分析:由于點P在運動中保持∠APD=90°,所以點P的路徑是一段以AD為直徑的弧,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,再由勾股定理可得QC的長,再求CP即可.詳解:由于點P在運動中保持∠APD=90°,∴點P的路徑是一段以AD為直徑的弧,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,在Rt△QDC中,QC=,∴CP=QC-QP=,故選B.點睛:本題主要考查的是圓的相關知識和勾股定理,屬于中等難度的題型.解決這個問題的關鍵是根據(jù)圓的知識得出點P的運動軌跡.5、C【解析】【分析】根據(jù)角平分線的作圖方法可判斷圖1,根據(jù)圖2的作圖痕跡可知D為BC中點,不是角平分線,圖3中根據(jù)作圖痕跡可通過判斷三角形全等推導得出AD是角平分線.【詳解】圖1中,根據(jù)作圖痕跡可知AD是角平分線;圖2中,根據(jù)作圖痕跡可知作的是BC的垂直平分線,則D為BC邊的中點,因此AD不是角平分線;圖3:由作圖方法可知AM=AE,AN=AF,∠BAC為公共角,∴△AMN≌△AEF,∴∠3=∠4,∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,∴DM=DE,又∵AD是公共邊,∴△ADM≌△ADE,∴∠1=∠2,即AD平分∠BAC,故選C.【點睛】本題考查了尺規(guī)作圖,三角形全等的判定與性質(zhì)等,熟知角平分的尺規(guī)作圖方法、全等三角形的判定與性質(zhì)是解題的關鍵.6、D【解析】

根據(jù)ED是BC的垂直平分線、BD是角平分線以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,從而可得CD=BD=2AD=6,然后利用三角函數(shù)的知識進行解答即可得.【詳解】∵ED是BC的垂直平分線,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分線,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE=3,故選D.【點睛】本題考查了線段垂直平分線的性質(zhì),三角形內(nèi)角和定理,含30度角的直角三角形的性質(zhì),余弦等,結合圖形熟練應用相關的性質(zhì)及定理是解題的關鍵.7、C【解析】試題分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC繞點A旋轉到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故選C.考點:1.面動旋轉問題;2.平行線的性質(zhì);3.旋轉的性質(zhì);4.等腰三角形的性質(zhì).8、B【解析】

根據(jù)旋轉的性質(zhì)可得AB=AE,∠BAE=60°,然后判斷出△AEB是等邊三角形,再根據(jù)等邊三角形的三條邊都相等可得BE=AB.【詳解】解:∵△ABC繞點A順時針旋轉

60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等邊三角形,∴BE=AB,∵AB=1,∴BE=1.故選B.【點睛】本題考查了旋轉的性質(zhì),等邊三角形的判定與性質(zhì),主要利用了旋轉前后對應邊相等以及旋轉角的定義.9、D【解析】

由拋物線與x軸有兩個交點可得出△=b2-4ac>0,進而可得出關于m的一元一次不等式,解之即可得出m的取值范圍.【詳解】∵拋物線y=x2-2x+m與x軸有兩個交點,∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故選D.【點睛】本題考查了拋物線與x軸的交點,牢記“當△=b2-4ac>0時,拋物線與x軸有2個交點”是解題的關鍵.10、D【解析】試題分析:D選項中作的是AB的中垂線,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故選D.考點:作圖—復雜作圖.11、C【解析】

根據(jù)三角形的中位線定理可得DE∥BC,=,即可證得△ADE∽△ABC,根據(jù)相似三角形面積的比等于相似比的平方可得=,已知△ADE的面積為1,即可求得S△ABC=1.【詳解】∵D、E分別是AB、AC的中點,∴DE是△ABC的中位線,∴DE∥BC,=,∴△ADE∽△ABC,∴=()2=,∵△ADE的面積為1,∴S△ABC=1.故選C.【點睛】本題考查了三角形的中位線定理及相似三角形的判定與性質(zhì),先證得△ADE∽△ABC,根據(jù)相似三角形面積的比等于相似比的平方得到=是解決問題的關鍵.12、C【解析】試題分析:立體圖形的俯視圖是C.故選C.考點:簡單組合體的三視圖.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】∵=8,()2=8,∴的算術平方根是.故答案為:.14、或【解析】

分0°<x°≤90°、90°<x°≤180°兩種情況,根據(jù)圓周角定理求出∠DOC,根據(jù)弧長公式計算即可.【詳解】解:當0°<x°≤90°時,如圖所示:連接OC,

由圓周角定理得,∠BOC=2∠A=2x°,

∴∠DOC=180°-2x°,

∴∠OBC所對的劣弧長=,

當90°<x°≤180°時,同理可得,∠OBC所對的劣弧長=.

故答案為:或.【點睛】本題考查了三角形的外接圓與外心、弧長的計算,掌握弧長公式、圓周角定理是解題的關鍵.15、6【解析】試題分析:由題意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,設AB=AO=OC=x,則有AC=2x,∠ACB=30°,在Rt△ABC中,根據(jù)勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,則AE=6故答案為6.16、11≤x<1【解析】

根據(jù)對于實數(shù)x我們規(guī)定[x]不大于x最大整數(shù),可得答案.【詳解】由[]=5,得:,解得11≤x<1,故答案是:11≤x<1.【點睛】考查了解一元一次不等式組,利用[x]不大于x最大整數(shù)得出不等式組是解題關鍵.17、﹣1.【解析】

由題意得:當頂點在M處,點A橫坐標為-3,可以求出拋物線的a值;當頂點在N處時,y=a-b+c取得最小值,即可求解.【詳解】解:由題意得:當頂點在M處,點A橫坐標為-3,則拋物線的表達式為:y=a(x+1)2+4,將點A坐標(-3,0)代入上式得:0=a(-3+1)2+4,解得:a=-1,當x=-1時,y=a-b+c,頂點在N處時,y=a-b+c取得最小值,頂點在N處,拋物線的表達式為:y=-(x-3)2+1,當x=-1時,y=a-b+c=-(-1-3)2+1=-1,故答案為-1.【點睛】本題考查的是二次函數(shù)知識的綜合運用,本題的核心是確定頂點在M、N處函數(shù)表達式,其中函數(shù)的a值始終不變.18、①②③【解析】

由公交車在7至12分鐘時間內(nèi)行駛的路程可求解其行駛速度,再由求解的速度可知公交車行駛的時間,進而可知小剛上公交車的時間;由上公交車到他到達學校共用10分鐘以及公交車行駛時間可知小剛跑步時間,進而判斷其是否遲到,再由圖可知其跑步距離,可求解小剛下公交車后跑向?qū)W校的速度.【詳解】解:公交車7至12分鐘時間內(nèi)行駛的路程為3500-1200-300=2000m,則其速度為2000÷5=400米/分鐘,故①正確;由圖可知,7分鐘時,公交車行駛的距離為1200-400=800m,則公交車行駛的時間為800÷400=2min,則小剛從家出發(fā)7-2=5分鐘時乘上公交車,故②正確;公交車一共行駛了2800÷400=7分鐘,則小剛從下公交車到學校一共花了10-7=3分鐘<4分鐘,故④錯誤,再由圖可知小明跑步時間為300÷3=100米/分鐘,故③正確.故正確的序號是:①②③.【點睛】本題考查了一次函數(shù)的應用.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)連接A、B兩市公路的路程為80km,貨車由B市到達A市所需時間為h;(2)y=﹣80x+60(0≤x≤);(3)機場大巴與貨車相遇地到機場C的路程為km.【解析】

(1)根據(jù)可求出連接A、B兩市公路的路程,再根據(jù)貨車h行駛20km可求出貨車行駛60km所需時間;(2)根據(jù)函數(shù)圖象上點的坐標,利用待定系數(shù)法即可求出機場大巴到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關系式;(3)利用待定系數(shù)法求出線段ED對應的函數(shù)表達式,聯(lián)立兩函數(shù)表達式成方程組,通過解方程組可求出機場大巴與貨車相遇地到機場C的路程.【詳解】解:(1)60+20=80(km),(h)∴連接A.

B兩市公路的路程為80km,貨車由B市到達A市所需時間為h.(2)設所求函數(shù)表達式為y=kx+b(k≠0),將點(0,60)、代入y=kx+b,得:解得:∴機場大巴到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關系式為(3)設線段ED對應的函數(shù)表達式為y=mx+n(m≠0)將點代入y=mx+n,得:解得:∴線段ED對應的函數(shù)表達式為解方程組得∴機場大巴與貨車相遇地到機場C的路程為km.【點睛】本題考查一次函數(shù)的應用,掌握待定系數(shù)法求函數(shù)關系式是解題的關鍵,本題屬于中檔題,難度不大,但過程比較繁瑣,因此再解決該題是一定要細心.20、(1)證明見解析(2)﹣6π【解析】

(1)直接利用切線的判定方法結合圓心角定理分析得出OD⊥EF,即可得出答案;(2)直接利用得出S△ACD=S△COD,再利用S陰影=S△AED﹣S扇形COD,求出答案.【詳解】(1)證明:連接OD,∵D為弧BC的中點,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∵DE⊥AC,∴∠E=90°,∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,∴OD⊥EF,∴EF為半圓O的切線;(2)解:連接OC與CD,∵DA=DF,∴∠BAD=∠F,∴∠BAD=∠F=∠CAD,又∵∠BAD+∠CAD+∠F=90°,∴∠F=30°,∠BAC=60°,∵OC=OA,∴△AOC為等邊三角形,∴∠AOC=60°,∠COB=120°,∵OD⊥EF,∠F=30°,∴∠DOF=60°,在Rt△ODF中,DF=6,∴OD=DF?tan30°=6,在Rt△AED中,DA=6,∠CAD=30°,∴DE=DA?sin30°=3,EA=DA?cos30°=9,∵∠COD=180°﹣∠AOC﹣∠DOF=60°,由CO=DO,∴△COD是等邊三角形,∴∠OCD=60°,∴∠DCO=∠AOC=60°,∴CD∥AB,故S△ACD=S△COD,∴S陰影=S△AED﹣S扇形COD==.【點睛】此題主要考查了切線的判定,圓周角定理,等邊三角形的判定與性質(zhì),解直角三角形及扇形面積求法等知識,得出S△ACD=S△COD是解題關鍵.21、(1)m=30,n=20,圖詳見解析;(2)90°;(3).【解析】分析:(1)、根據(jù)B的人數(shù)和百分比得出總人數(shù),從而根據(jù)總人數(shù)分別求出m和n的值;(2)、根據(jù)C的人數(shù)和總人數(shù)的比值得出扇形的圓心角度數(shù);(3)、首先根據(jù)題意畫出樹狀圖,然后根據(jù)概率的計算法則得出答案.詳解:(1)∵總人數(shù)為15÷15%=100(人),∴D組人數(shù)m=100×30%=30,E組人數(shù)n=100×20%=20,補全條形圖如下:(2)扇形統(tǒng)計圖中“C組”所對應的圓心角的度數(shù)是360°×=90°,(3)記通過為A、淘汰為B、待定為C,畫樹狀圖如下:由樹狀圖可知,共有27種等可能結果,其中獲得兩位評委老師的“通過”有7種情況,∴E組學生王云參加鄂州市“漢字聽寫”比賽的概率為.點睛:本題主要考查的就是扇形統(tǒng)計圖、條形統(tǒng)計圖以及概率的計算法則,屬于基礎題型.解決這個問題,我們一定要明白樣本容量=頻數(shù)÷頻率,根據(jù)這個公式即可進行求解.22、(2)證明見試題解析;(2).【解析】

(2)過點O作OM⊥AB于M,證明OM=圓的半徑OD即可;(2)過點O作ON⊥BE,垂足是N,連接OF,得到四邊形OMBN是矩形,在直角△OBM中利用三角函數(shù)求得OM和BM的長,進而求得BN和ON的長,在直角△ONF中利用勾股定理求得NF,則BF即可求解.【詳解】解:(2)過點O作OM⊥AB,垂足是M.∵⊙O與AC相切于點D,∴OD⊥AC,∴∠ADO=∠AMO=90°.∵△ABC是等邊三角形,∴∠DAO=∠MAO,∴OM=OD,∴AB與⊙O相切;(2)過點O作ON⊥BE,垂足是N,連接OF.∵O是BC的中點,∴OB=2.在直角△OBM中,∠MBO=60°,∴∠MOB=30°,BM=OB=2,OM=BM=,∵BE⊥AB,∴四邊形OMBN是矩形,∴ON=BM=2,BN=OM=.∵OF=OM=,由勾股定理得NF=.∴BF=BN+NF=.考點:2.切線的判定與性質(zhì);2.勾股定理;3.解直角三角形;4.綜合題.23、(1)560;(2)54;(3)詳見解析;(4)獨立思考的學生約有840人.【解析】

(1)由“專注聽講”的學生人數(shù)除以占的百分比求出調(diào)查學生總數(shù)即可;(2)由“主動質(zhì)疑”占的百分比乘以360°即可得到結果;(3)求出“講解題目”的學生數(shù),補全統(tǒng)計圖即可;(4)求出“獨立思考”學生占的百分比,乘以2800即可得到結果.【詳解】(1)根據(jù)題意得:224÷40%=560(名),則在這次評價中,一個調(diào)查了560名學生;故答案為:560;(2)根據(jù)題意得:×360°=54°,則在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)為54度;故答案為:54;(3)“講解題目”的人數(shù)為560-(84+168+224)=84,補全統(tǒng)計圖如下:(4)根據(jù)題意得:2800×(人),則“獨立思考”的學生約有840人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.24、(1)證明見解析;(2)1-π.【解析】

(1)解直角三角形求出BC,根據(jù)勾股定理求出AB,根據(jù)三角形面積公式求出CF,根據(jù)切線的判定得出即可;(2)分別求出△ACB的面積和扇形DCE的面積,即可得出答案.【詳解】(1)過C作CF⊥AB于F.∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.∵△ACB的面積S,∴CF2,∴CF為⊙C的半徑.∵CF⊥AB,∴AB為⊙C的切線;(2)圖中陰影部分的面積=S△ACB﹣S扇形DCE1﹣π.【點睛】本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論