2023屆遼寧省葫蘆島市連山區(qū)中考數(shù)學(xué)考前最后一卷含解析_第1頁
2023屆遼寧省葫蘆島市連山區(qū)中考數(shù)學(xué)考前最后一卷含解析_第2頁
2023屆遼寧省葫蘆島市連山區(qū)中考數(shù)學(xué)考前最后一卷含解析_第3頁
2023屆遼寧省葫蘆島市連山區(qū)中考數(shù)學(xué)考前最后一卷含解析_第4頁
2023屆遼寧省葫蘆島市連山區(qū)中考數(shù)學(xué)考前最后一卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年中考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,四邊形ABCD內(nèi)接于⊙O,若∠B=130°,則∠AOC的大小是()A.130° B.120° C.110° D.100°2.下列代數(shù)運(yùn)算正確的是()A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3?x2=x53.一球鞋廠,現(xiàn)打折促銷賣出330雙球鞋,比上個(gè)月多賣10%,設(shè)上個(gè)月賣出x雙,列出方程()A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=3304.如圖,點(diǎn)A,B在雙曲線y=(x>0)上,點(diǎn)C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于()A. B.2 C.4 D.35.如圖,在菱形ABCD中,∠A=60°,E是AB邊上一動(dòng)點(diǎn)(不與A、B重合),且∠EDF=∠A,則下列結(jié)論錯(cuò)誤的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等邊三角形 D.△BEF是等腰三角形6.如圖,在平面直角坐標(biāo)系xOy中,等腰梯形ABCD的頂點(diǎn)坐標(biāo)分別為A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A為對(duì)稱中心作點(diǎn)P(0,2)的對(duì)稱點(diǎn)P1,以B為對(duì)稱中心作點(diǎn)P1的對(duì)稱點(diǎn)P2,以C為對(duì)稱中心作點(diǎn)P2的對(duì)稱點(diǎn)P3,以D為對(duì)稱中心作點(diǎn)P3的對(duì)稱點(diǎn)P4,…,重復(fù)操作依次得到點(diǎn)P1,P2,…,則點(diǎn)P2010的坐標(biāo)是()A.(2010,2) B.(2010,﹣2) C.(2012,﹣2) D.(0,2)7.如圖,正六邊形ABCDEF中,P、Q兩點(diǎn)分別為△ACF、△CEF的內(nèi)心.若AF=2,則PQ的長度為何?()A.1 B.2 C.2﹣2 D.4﹣28.去年二月份,某房地產(chǎn)商將房?jī)r(jià)提高40%,在中央“房子是用來住的,不是用來炒的”指示下達(dá)后,立即降價(jià)30%.設(shè)降價(jià)后房?jī)r(jià)為x,則去年二月份之前房?jī)r(jià)為()A.(1+40%)×30%x B.(1+40%)(1﹣30%)xC. D.9.如圖,點(diǎn)A是反比例函數(shù)y=的圖象上的一點(diǎn),過點(diǎn)A作AB⊥x軸,垂足為B.點(diǎn)C為y軸上的一點(diǎn),連接AC,BC.若△ABC的面積為3,則k的值是()A.3 B.﹣3 C.6 D.﹣610.2019年4月份,某市市區(qū)一周空氣質(zhì)量報(bào)告中某項(xiàng)污染指數(shù)的數(shù)據(jù)是:31,35,31,34,30,32,31,這組數(shù)據(jù)的中位數(shù)、眾數(shù)分別是()A.32,31 B.31,32 C.31,31 D.32,35二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在長方形ABCD中,AF⊥BD,垂足為E,AF交BC于點(diǎn)F,連接DF.圖中有全等三角形_____對(duì),有面積相等但不全等的三角形_____對(duì).12.因式分解:2x13.如圖,已知⊙O是△ABD的外接圓,AB是⊙O的直徑,CD是⊙O的弦,∠ABD=58°,則∠BCD的度數(shù)是_____.14.如圖,△ABC是⊙O的內(nèi)接三角形,AD是⊙O的直徑,∠ABC=50°,則∠CAD=________

.15.已知實(shí)數(shù)x,y滿足,則以x,y的值為兩邊長的等腰三角形的周長是______.16.一組數(shù)據(jù)1,4,4,3,4,3,4的眾數(shù)是_____.17.若am=5,an=6,則am+n=________.三、解答題(共7小題,滿分69分)18.(10分)綜合與實(shí)踐﹣猜想、證明與拓廣問題情境:數(shù)學(xué)課上同學(xué)們探究正方形邊上的動(dòng)點(diǎn)引發(fā)的有關(guān)問題,如圖1,正方形ABCD中,點(diǎn)E是BC邊上的一點(diǎn),點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,直線DF交AB于點(diǎn)H,直線FB與直線AE交于點(diǎn)G,連接DG,CG.猜想證明(1)當(dāng)圖1中的點(diǎn)E與點(diǎn)B重合時(shí)得到圖2,此時(shí)點(diǎn)G也與點(diǎn)B重合,點(diǎn)H與點(diǎn)A重合.同學(xué)們發(fā)現(xiàn)線段GF與GD有確定的數(shù)量關(guān)系和位置關(guān)系,其結(jié)論為:;(2)希望小組的同學(xué)發(fā)現(xiàn),圖1中的點(diǎn)E在邊BC上運(yùn)動(dòng)時(shí),(1)中結(jié)論始終成立,為證明這兩個(gè)結(jié)論,同學(xué)們展開了討論:小敏:根據(jù)軸對(duì)稱的性質(zhì),很容易得到“GF與GD的數(shù)量關(guān)系”…小麗:連接AF,圖中出現(xiàn)新的等腰三角形,如△AFB,…小凱:不妨設(shè)圖中不斷變化的角∠BAF的度數(shù)為n,并設(shè)法用n表示圖中的一些角,可證明結(jié)論.請(qǐng)你參考同學(xué)們的思路,完成證明;(3)創(chuàng)新小組的同學(xué)在圖1中,發(fā)現(xiàn)線段CG∥DF,請(qǐng)你說明理由;聯(lián)系拓廣:(4)如圖3若將題中的“正方形ABCD”變?yōu)椤傲庑蜛BCD“,∠ABC=α,其余條件不變,請(qǐng)?zhí)骄俊螪FG的度數(shù),并直接寫出結(jié)果(用含α的式子表示).19.(5分)如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,點(diǎn)A,B,C均在格點(diǎn)上.(Ⅰ)△ABC的面積等于_____;(Ⅱ)若四邊形DEFG是正方形,且點(diǎn)D,E在邊CA上,點(diǎn)F在邊AB上,點(diǎn)G在邊BC上,請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出點(diǎn)E,點(diǎn)G,并簡(jiǎn)要說明點(diǎn)E,點(diǎn)G的位置是如何找到的(不要求證明)_____.20.(8分)在平面直角坐標(biāo)系中,已知直線y=﹣x+4和點(diǎn)M(3,2)(1)判斷點(diǎn)M是否在直線y=﹣x+4上,并說明理由;(2)將直線y=﹣x+4沿y軸平移,當(dāng)它經(jīng)過M關(guān)于坐標(biāo)軸的對(duì)稱點(diǎn)時(shí),求平移的距離;(3)另一條直線y=kx+b經(jīng)過點(diǎn)M且與直線y=﹣x+4交點(diǎn)的橫坐標(biāo)為n,當(dāng)y=kx+b隨x的增大而增大時(shí),則n取值范圍是_____.21.(10分)某中學(xué)為了提高學(xué)生的消防意識(shí),舉行了消防知識(shí)競(jìng)賽,所有參賽學(xué)生分別設(shè)有一、二、三等獎(jiǎng)和紀(jì)念獎(jiǎng),獲獎(jiǎng)情況已繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中所經(jīng)信息解答下列問題:(1)這次知識(shí)競(jìng)賽共有多少名學(xué)生?(2)“二等獎(jiǎng)”對(duì)應(yīng)的扇形圓心角度數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;(3)小華參加了此次的知識(shí)競(jìng)賽,請(qǐng)你幫他求出獲得“一等獎(jiǎng)或二等獎(jiǎng)”的概率.22.(10分)圖1和圖2中,優(yōu)弧紙片所在⊙O的半徑為2,AB=2,點(diǎn)P為優(yōu)弧上一點(diǎn)(點(diǎn)P不與A,B重合),將圖形沿BP折疊,得到點(diǎn)A的對(duì)稱點(diǎn)A′.發(fā)現(xiàn):(1)點(diǎn)O到弦AB的距離是,當(dāng)BP經(jīng)過點(diǎn)O時(shí),∠ABA′=;(2)當(dāng)BA′與⊙O相切時(shí),如圖2,求折痕的長.拓展:把上圖中的優(yōu)弧紙片沿直徑MN剪裁,得到半圓形紙片,點(diǎn)P(不與點(diǎn)M,N重合)為半圓上一點(diǎn),將圓形沿NP折疊,分別得到點(diǎn)M,O的對(duì)稱點(diǎn)A′,O′,設(shè)∠MNP=α.(1)當(dāng)α=15°時(shí),過點(diǎn)A′作A′C∥MN,如圖3,判斷A′C與半圓O的位置關(guān)系,并說明理由;(2)如圖4,當(dāng)α=°時(shí),NA′與半圓O相切,當(dāng)α=°時(shí),點(diǎn)O′落在上.(3)當(dāng)線段NO′與半圓O只有一個(gè)公共點(diǎn)N時(shí),直接寫出β的取值范圍.23.(12分)“機(jī)動(dòng)車行駛到斑馬線要禮讓行人”等交通法規(guī)實(shí)施后,某校數(shù)學(xué)課外實(shí)踐小組就對(duì)這些交通法規(guī)的了解情況在全校隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實(shí)踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中所給信息解答下列問題:(1)本次共調(diào)查名學(xué)生;扇形統(tǒng)計(jì)圖中C所對(duì)應(yīng)扇形的圓心角度數(shù)是;(2)補(bǔ)全條形統(tǒng)計(jì)圖;(3)該校共有800名學(xué)生,根據(jù)以上信息,請(qǐng)你估計(jì)全校學(xué)生中對(duì)這些交通法規(guī)“非常了解”的有多少名?(4)通過此次調(diào)查,數(shù)學(xué)課外實(shí)踐小組的學(xué)生對(duì)交通法規(guī)有了更多的認(rèn)識(shí),學(xué)校準(zhǔn)備從組內(nèi)的甲、乙、丙、丁四位學(xué)生中隨機(jī)抽取兩名學(xué)生參加市區(qū)交通法規(guī)競(jìng)賽,請(qǐng)用列表或畫樹狀圖的方法求甲和乙兩名學(xué)生同時(shí)被選中的概率.24.(14分)某數(shù)學(xué)教師為了解所教班級(jí)學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,對(duì)該班部分學(xué)生進(jìn)行了一學(xué)期的跟蹤調(diào)查,將調(diào)查結(jié)果分為四類并給出相應(yīng)分?jǐn)?shù),A:很好,95分;B:較好75分;C:一般,60分;D:較差,30分.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:(Ⅰ)該教師調(diào)查的總?cè)藬?shù)為,圖②中的m值為;(Ⅱ)求樣本中分?jǐn)?shù)值的平均數(shù)、眾數(shù)和中位數(shù).

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】分析:先根據(jù)圓內(nèi)接四邊形的性質(zhì)得到然后根據(jù)圓周角定理求詳解:∵∴∴故選D.點(diǎn)睛:考查圓內(nèi)接四邊形的性質(zhì),圓周角定理,掌握?qǐng)A內(nèi)接四邊形的對(duì)角互補(bǔ)是解題的關(guān)鍵.2、D【解析】

分別根據(jù)同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式進(jìn)行逐一計(jì)算即可.【詳解】解:A.(x+1)2=x2+2x+1,故A錯(cuò)誤;B.(x3)2=x6,故B錯(cuò)誤;C.(2x)2=4x2,故C錯(cuò)誤.D.x3?x2=x5,故D正確.故本題選D.【點(diǎn)睛】本題考查的是同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式,熟練掌握他們的定義是解題的關(guān)鍵.3、D【解析】解:設(shè)上個(gè)月賣出x雙,根據(jù)題意得:(1+10%)x=1.故選D.4、B【解析】【分析】依據(jù)點(diǎn)C在雙曲線y=上,AC∥y軸,BC∥x軸,可設(shè)C(a,),則B(3a,),A(a,),依據(jù)AC=BC,即可得到﹣=3a﹣a,進(jìn)而得出a=1,依據(jù)C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,進(jìn)而得到Rt△ABC中,AB=2.【詳解】點(diǎn)C在雙曲線y=上,AC∥y軸,BC∥x軸,設(shè)C(a,),則B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(負(fù)值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故選B.【點(diǎn)睛】本題主要考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,注意反比例函數(shù)圖象上的點(diǎn)(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.5、D【解析】

連接BD,可得△ADE≌△BDF,然后可證得DE=DF,AE=BF,即可得△DEF是等邊三角形,然后可證得∠ADE=∠BEF.【詳解】連接BD,∵四邊形ABCD是菱形,

∴AD=AB,∠ADB=∠ADC,AB∥CD,

∵∠A=60°,

∴∠ADC=120°,∠ADB=60°,

同理:∠DBF=60°,

即∠A=∠DBF,

∴△ABD是等邊三角形,

∴AD=BD,

∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,

∴∠ADE=∠BDF,

∵在△ADE和△BDF中,,

∴△ADE≌△BDF(ASA),

∴DE=DF,AE=BF,故A正確;

∵∠EDF=60°,

∴△EDF是等邊三角形,

∴C正確;

∴∠DEF=60°,

∴∠AED+∠BEF=120°,

∵∠AED+∠ADE=180°-∠A=120°,

∴∠ADE=∠BEF;

故B正確.

∵△ADE≌△BDF,

∴AE=BF,

同理:BE=CF,

但BE不一定等于BF.

故D錯(cuò)誤.

故選D.【點(diǎn)睛】本題考查了菱形的性質(zhì)、等邊三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是正確尋找全等三角形解決問題.6、B【解析】分析:根據(jù)題意,以A為對(duì)稱中心作點(diǎn)P(0,1)的對(duì)稱點(diǎn)P1,即A是PP1的中點(diǎn),結(jié)合中點(diǎn)坐標(biāo)公式即可求得點(diǎn)P1的坐標(biāo);同理可求得其它各點(diǎn)的坐標(biāo),分析可得規(guī)律,進(jìn)而可得答案.詳解:根據(jù)題意,以A為對(duì)稱中心作點(diǎn)P(0,1)的對(duì)稱點(diǎn)P1,即A是PP1的中點(diǎn),又∵A的坐標(biāo)是(1,1),結(jié)合中點(diǎn)坐標(biāo)公式可得P1的坐標(biāo)是(1,0);同理P1的坐標(biāo)是(1,﹣1),記P1(a1,b1),其中a1=1,b1=﹣1.根據(jù)對(duì)稱關(guān)系,依次可以求得:P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),令P6(a6,b1),同樣可以求得,點(diǎn)P10的坐標(biāo)為(4+a6,b1),即P10(4×1+a1,b1),∵1010=4×501+1,∴點(diǎn)P1010的坐標(biāo)是(1010,﹣1),故選:B.點(diǎn)睛:本題考查了對(duì)稱的性質(zhì),坐標(biāo)與圖形的變化---旋轉(zhuǎn),根據(jù)條件求出前邊幾個(gè)點(diǎn)的坐標(biāo),得到規(guī)律是解題關(guān)鍵.7、C【解析】

先判斷出PQ⊥CF,再求出AC=2,AF=2,CF=2AF=4,利用△ACF的面積的兩種算法即可求出PG,然后計(jì)算出PQ即可.【詳解】解:如圖,連接PF,QF,PC,QC∵P、Q兩點(diǎn)分別為△ACF、△CEF的內(nèi)心,∴PF是∠AFC的角平分線,F(xiàn)Q是∠CFE的角平分線,∴∠PFC=∠AFC=30°,∠QFC=∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等邊三角形,∴PQ=2PG;易得△ACF≌△ECF,且內(nèi)角是30o,60o,90o的三角形,∴AC=2,AF=2,CF=2AF=4,∴S△ACF=AF×AC=×2×2=2,過點(diǎn)P作PM⊥AF,PN⊥AC,PQ交CF于G,∵點(diǎn)P是△ACF的內(nèi)心,∴PM=PN=PG,∴S△ACF=S△PAF+S△PAC+S△PCF=AF×PM+AC×PN+CF×PG=×2×PG+×2×PG+×4×PG=(1++2)PG=(3+)PG=2,∴PG==,∴PQ=2PG=2()=2-2.故選C.【點(diǎn)睛】本題是三角形的內(nèi)切圓與內(nèi)心,主要考查了三角形的內(nèi)心的特點(diǎn),三角形的全等,解本題的關(guān)鍵是知道三角形的內(nèi)心的意義.8、D【解析】

根據(jù)題意可以用相應(yīng)的代數(shù)式表示出去年二月份之前房?jī)r(jià),本題得以解決.【詳解】由題意可得,去年二月份之前房?jī)r(jià)為:x÷(1﹣30%)÷(1+40%)=,故選:D.【點(diǎn)睛】本題考查了列代數(shù)式,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的代數(shù)式.9、D【解析】試題分析:連結(jié)OA,如圖,∵AB⊥x軸,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故選D.考點(diǎn):反比例函數(shù)系數(shù)k的幾何意義.10、C【解析】分析:找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個(gè)數(shù)(或兩個(gè)數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個(gè).解答:解:從小到大排列此數(shù)據(jù)為:30、1、1、1、32、34、35,數(shù)據(jù)1出現(xiàn)了三次最多為眾數(shù),1處在第4位為中位數(shù).所以本題這組數(shù)據(jù)的中位數(shù)是1,眾數(shù)是1.故選C.二、填空題(共7小題,每小題3分,滿分21分)11、11【解析】

根據(jù)長方形的對(duì)邊相等,每一個(gè)角都是直角可得AB=CD,AD=BC,∠BAD=∠C=90°,然后利用“邊角邊”證明Rt△ABD和Rt△CDB全等;根據(jù)等底等高的三角形面積相等解答.【詳解】有,Rt△ABD≌Rt△CDB,理由:在長方形ABCD中,AB=CD,AD=BC,∠BAD=∠C=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(SAS);有,△BFD與△BFA,△ABD與△AFD,△ABE與△DFE,△AFD與△BCD面積相等,但不全等.故答案為:1;1.【點(diǎn)睛】本題考查了全等三角形的判定,長方形的性質(zhì),以及等底等高的三角形的面積相等.12、2(x+3)(x﹣3).【解析】試題分析:先提公因式2后,再利用平方差公式分解即可,即2x2-18考點(diǎn):因式分解.13、32°【解析】

根據(jù)直徑所對(duì)的圓周角是直角得到∠ADB=90°,求出∠A的度數(shù),根據(jù)圓周角定理解答即可.【詳解】∵AB是⊙O的直徑,

∴∠ADB=90°,

∵∠ABD=58°,

∴∠A=32°,

∴∠BCD=32°,

故答案為32°.14、40°【解析】連接CD,則∠ADC=∠ABC=50°,∵AD是⊙O的直徑,∴∠ACD=90°,∴∠CAD+∠ADC=90°,∴∠CAD=90°-∠ADC=90°-50°=40°,故答案為:40°.15、1或2【解析】

先根據(jù)非負(fù)數(shù)的性質(zhì)列式求出x、y的值,再分x的值是腰長與底邊兩種情況討論求解.【詳解】根據(jù)題意得,x-5=0,y-7=0,解得x=5,y=7,①5是腰長時(shí),三角形的三邊分別為5、5、7,三角形的周長為1.②5是底邊時(shí),三角形的三邊分別為5、7、7,能組成三角形,5+7+7=2;所以,三角形的周長為:1或2;故答案為1或2.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì),絕對(duì)值與算術(shù)平方根的非負(fù)性,根據(jù)幾個(gè)非負(fù)數(shù)的和等于0,則每一個(gè)算式都等于0求出x、y的值是解題的關(guān)鍵,難點(diǎn)在于要分情況討論并且利用三角形的三邊關(guān)系進(jìn)行判斷.16、1【解析】

本題考查了統(tǒng)計(jì)的有關(guān)知識(shí),眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個(gè).【詳解】在這一組數(shù)據(jù)中1是出現(xiàn)次數(shù)最多的,故眾數(shù)是1.故答案為1.【點(diǎn)睛】本題為統(tǒng)計(jì)題,考查了眾數(shù)的定義,是基礎(chǔ)題型.17、1.【解析】

根據(jù)同底數(shù)冪乘法性質(zhì)am·an=am+n,即可解題.【詳解】解:am+n=am·an=5×6=1.【點(diǎn)睛】本題考查了同底數(shù)冪乘法計(jì)算,屬于簡(jiǎn)單題,熟悉法則是解題關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)GF=GD,GF⊥GD;(2)見解析;(3)見解析;(4)90°﹣.【解析】

(1)根據(jù)四邊形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,即可證明出∠DBF=90°,故GF⊥GD,再根據(jù)∠F=∠ADB,即可證明GF=GD;(2)連接AF,證明∠AFG=∠ADG,再根據(jù)四邊形ABCD是正方形,得出AB=AD,∠BAD=90°,設(shè)∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,再分別求出∠GFD與∠DBC的角度,再根據(jù)三角函數(shù)的性質(zhì)可證明出△BDF∽△CDG,故∠DGC=∠FDG,則CG∥DF;(4)連接AF,BD,根據(jù)題意可證得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根據(jù)菱形的性質(zhì)可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.【詳解】解:(1)GF=GD,GF⊥GD,理由:∵四邊形ABCD是正方形,∴∠ABD=∠ADB=45°,∠BAD=90°,∵點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,∠BAD=∠BAF=90°,∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,∴∠DBF=90°,∴GF⊥GD,∵∠BAD=∠BAF=90°,∴點(diǎn)F,A,D在同一條線上,∵∠F=∠ADB,∴GF=GD,故答案為GF=GD,GF⊥GD;(2)連接AF,∵點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,∴直線AE是線段DF的垂直平分線,∴AF=AD,GF=GD,∴∠1=∠2,∠3=∠FDG,∴∠1+∠3=∠2+∠FDG,∴∠AFG=∠ADG,∵四邊形ABCD是正方形,∴AB=AD,∠BAD=90°,設(shè)∠BAF=n,∴∠FAD=90°+n,∵AF=AD=AB,∴∠FAD=∠ABF,∴∠AFB+∠ABF=180°﹣n,∴∠AFB+∠ADG=180°﹣n,∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,∴GF⊥DG,(3)如圖2,連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,∵四邊形ABCD是正方形,∴BC=CD,∠BCD=90°,∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,∴∠FDG=∠BDC,∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,∴∠FDB=∠GDC,在Rt△BDC中,sin∠DFG==sin45°=,在Rt△BDC中,sin∠DBC==sin45°=,∴,∴,∴△BDF∽△CDG,∵∠FDB=∠GDC,∴∠DGC=∠DFG=45°,∴∠DGC=∠FDG,∴CG∥DF;(4)90°﹣,理由:如圖3,連接AF,BD,∵點(diǎn)D與點(diǎn)F關(guān)于AE對(duì)稱,∴AE是線段DF的垂直平分線,∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,∴∠DAM=90°﹣∠2=90°﹣∠1,∴∠DAF=2∠DAM=180°﹣2∠1,∵四邊形ABCD是菱形,∴AB=AD,∴∠AFB=∠ABF=∠DFG+∠1,∵BD是菱形的對(duì)角線,∴∠ADB=∠ABD=α,在四邊形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°∴2∠DFG+2∠1+α﹣2∠1=180°,∴∠DFG=90°﹣.【點(diǎn)睛】本題考查了正方形、菱形、相似三角形的性質(zhì),解題的根據(jù)是熟練的掌握正方形、菱形、相似三角形的性質(zhì).19、6作出∠ACB的角平分線交AB于F,再過F點(diǎn)作FE⊥AC于E,作FG⊥BC于G【解析】

(1)根據(jù)三角形面積公式即可求解,(2)作出∠ACB的角平分線交AB于F,再過F點(diǎn)作FE⊥AC于E,作FG⊥BC于G,過G點(diǎn)作GD⊥AC于D,四邊形DEFG即為所求正方形.【詳解】解:(1)4×3÷2=6,故△ABC的面積等于6.(2)如圖所示,作出∠ACB的角平分線交AB于F,再過F點(diǎn)作FE⊥AC于E,作FG⊥BC于G,四邊形DEFG即為所求正方形.

故答案為:6,作出∠ACB的角平分線交AB于F,再過F點(diǎn)作FE⊥AC于E,作FG⊥BC于G.【點(diǎn)睛】本題主要考查了作圖-應(yīng)用與設(shè)計(jì)作圖、三角形的面積以及正方形的性質(zhì)、角平分線的性質(zhì),熟練掌握角平分線的性質(zhì)及正方形的性質(zhì)作出正確的圖形是解本題的關(guān)鍵.20、(1)點(diǎn)M(1,2)不在直線y=﹣x+4上,理由見解析;(2)平移的距離為1或2;(1)2<n<1.【解析】

(1)將x=1代入y=-x+4,求出y=-1+4=1≠2,即可判斷點(diǎn)M(1,2)不在直線y=-x+4上;(2)設(shè)直線y=-x+4沿y軸平移后的解析式為y=-x+4+b.分兩種情況進(jìn)行討論:①點(diǎn)M(1,2)關(guān)于x軸的對(duì)稱點(diǎn)為點(diǎn)M1(1,-2);②點(diǎn)M(1,2)關(guān)于y軸的對(duì)稱點(diǎn)為點(diǎn)M2(-1,2).分別求出b的值,得到平移的距離;(1)由直線y=kx+b經(jīng)過點(diǎn)M(1,2),得到b=2-1k.由直線y=kx+b與直線y=-x+4交點(diǎn)的橫坐標(biāo)為n,得出y=kn+b=-n+4,k=.根據(jù)y=kx+b隨x的增大而增大,得到k>0,即>0,那么①,或②,分別解不等式組即可求出n的取值范圍.【詳解】(1)點(diǎn)M不在直線y=﹣x+4上,理由如下:∵當(dāng)x=1時(shí),y=﹣1+4=1≠2,∴點(diǎn)M(1,2)不在直線y=﹣x+4上;(2)設(shè)直線y=﹣x+4沿y軸平移后的解析式為y=﹣x+4+b.①點(diǎn)M(1,2)關(guān)于x軸的對(duì)稱點(diǎn)為點(diǎn)M1(1,﹣2),∵點(diǎn)M1(1,﹣2)在直線y=﹣x+4+b上,∴﹣2=﹣1+4+b,∴b=﹣1,即平移的距離為1;②點(diǎn)M(1,2)關(guān)于y軸的對(duì)稱點(diǎn)為點(diǎn)M2(﹣1,2),∵點(diǎn)M2(﹣1,2)在直線y=﹣x+4+b上,∴2=1+4+b,∴b=﹣2,即平移的距離為2.綜上所述,平移的距離為1或2;(1)∵直線y=kx+b經(jīng)過點(diǎn)M(1,2),∴2=1k+b,b=2﹣1k.∵直線y=kx+b與直線y=﹣x+4交點(diǎn)的橫坐標(biāo)為n,∴y=kn+b=﹣n+4,∴kn+2﹣1k=﹣n+4,∴k=.∵y=kx+b隨x的增大而增大,∴k>0,即>0,∴①,或②,不等式組①無解,不等式組②的解集為2<n<1.∴n的取值范圍是2<n<1.故答案為2<n<1.【點(diǎn)睛】本題考查了一次函數(shù)圖象與幾何變換,一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,一次函數(shù)的性質(zhì),解一元一次不等式組,都是基礎(chǔ)知識(shí),需熟練掌握.21、(1)200;(2)72°,作圖見解析;(3).【解析】

(1)用一等獎(jiǎng)的人數(shù)除以所占的百分比求出總?cè)藬?shù);(2)用總?cè)藬?shù)乘以二等獎(jiǎng)的人數(shù)所占的百分比求出二等獎(jiǎng)的人數(shù),補(bǔ)全統(tǒng)計(jì)圖,再用360°乘以二等獎(jiǎng)的人數(shù)所占的百分比即可求出“二等獎(jiǎng)”對(duì)應(yīng)的扇形圓心角度數(shù);(3)用獲得一等獎(jiǎng)和二等獎(jiǎng)的人數(shù)除以總?cè)藬?shù)即可得出答案.【詳解】解:(1)這次知識(shí)競(jìng)賽共有學(xué)生=200(名);(2)二等獎(jiǎng)的人數(shù)是:200×(1﹣10%﹣24%﹣46%)=40(人),補(bǔ)圖如下:“二等獎(jiǎng)”對(duì)應(yīng)的扇形圓心角度數(shù)是:360°×=72°;(3)小華獲得“一等獎(jiǎng)或二等獎(jiǎng)”的概率是:=.【點(diǎn)睛】本題主要考查了條形統(tǒng)計(jì)圖以及扇形統(tǒng)計(jì)圖,利用統(tǒng)計(jì)圖獲取信息是解本題的關(guān)鍵.22、發(fā)現(xiàn):(1)1,60°;(2)2;拓展:(1)相切,理由詳見解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【解析】

發(fā)現(xiàn):(1)利用垂徑定理和勾股定理即可求出點(diǎn)O到AB的距離;利用銳角三角函數(shù)的定義及軸對(duì)稱性就可求出∠ABA′.(2)根據(jù)切線的性質(zhì)得到∠OBA′=90°,從而得到∠ABA′=120°,就可求出∠ABP,進(jìn)而求出∠OBP=30°.過點(diǎn)O作OG⊥BP,垂足為G,容易求出OG、BG的長,根據(jù)垂徑定理就可求出折痕的長.拓展:(1)過A'、O作A'H⊥MN于點(diǎn)H,OD⊥A'C于點(diǎn)D.用含30°角的直角三角形的性質(zhì)可得OD=A'H=A'N=MN=2可判定A′C與半圓相切;(2)當(dāng)NA′與半圓相切時(shí),可知ON⊥A′N,則可知α=45°,當(dāng)O′在時(shí),連接MO′,則可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;(3)根據(jù)點(diǎn)A′的位置不同得到線段NO′與半圓O只有一個(gè)公共點(diǎn)N時(shí)α的取值范圍是0°<α<30°或45°≤α<90°.【詳解】發(fā)現(xiàn):(1)過點(diǎn)O作OH⊥AB,垂足為H,如圖1所示,∵⊙O的半徑為2,AB=2,∴OH==在△BOH中,OH=1,BO=2∴∠ABO=30°∵圖形沿BP折疊,得到點(diǎn)A的對(duì)稱點(diǎn)A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)過點(diǎn)O作OG⊥BP,垂足為G,如圖2所示.∵BA′與⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的長為2拓展:(1)相切.分別過A'、O作A'H⊥MN于點(diǎn)H,OD⊥A'C于點(diǎn)D.如圖3所示,∵A'C∥MN∴四邊形A'HOD是矩形∴A'H=O∵α=15°∴∠A'NH=30∴OD=A'H

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論