![2023屆江西省新余一中學中考三模數(shù)學試題含解析_第1頁](http://file4.renrendoc.com/view/64d02c469b3ec432d09718b5fe414bb1/64d02c469b3ec432d09718b5fe414bb11.gif)
![2023屆江西省新余一中學中考三模數(shù)學試題含解析_第2頁](http://file4.renrendoc.com/view/64d02c469b3ec432d09718b5fe414bb1/64d02c469b3ec432d09718b5fe414bb12.gif)
![2023屆江西省新余一中學中考三模數(shù)學試題含解析_第3頁](http://file4.renrendoc.com/view/64d02c469b3ec432d09718b5fe414bb1/64d02c469b3ec432d09718b5fe414bb13.gif)
![2023屆江西省新余一中學中考三模數(shù)學試題含解析_第4頁](http://file4.renrendoc.com/view/64d02c469b3ec432d09718b5fe414bb1/64d02c469b3ec432d09718b5fe414bb14.gif)
![2023屆江西省新余一中學中考三模數(shù)學試題含解析_第5頁](http://file4.renrendoc.com/view/64d02c469b3ec432d09718b5fe414bb1/64d02c469b3ec432d09718b5fe414bb15.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,AB為⊙O的直徑,C,D為⊙O上的兩點,若AB=14,BC=1.則∠BDC的度數(shù)是()A.15° B.30° C.45° D.60°2.下列分子結構模型的平面圖中,既是軸對稱圖形又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個3.下列運算正確的是()A.x?x4=x5 B.x6÷x3=x2 C.3x2﹣x2=3 D.(2x2)3=6x64.若點A(1,a)和點B(4,b)在直線y=-2x+m上,則a與b的大小關系是()A.a(chǎn)>b B.a(chǎn)<bC.a(chǎn)=b D.與m的值有關5.已知函數(shù)y=(k-1)x2-4x+4的圖象與x軸只有一個交點,則k的取值范圍是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或16.一、單選題在反比例函數(shù)的圖象中,陰影部分的面積不等于4的是()A. B. C. D.7.下列實數(shù)中,無理數(shù)是()A.3.14 B.1.01001 C. D.8.不等式的解集在數(shù)軸上表示正確的是()A. B. C. D.9.如圖是二次函數(shù)的圖象,有下面四個結論:;;;,其中正確的結論是
A. B. C. D.10.若關于,的二元一次方程組的解也是二元一次方程的解,則的值為A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知點A(2,2)在雙曲線上,將線段OA沿x軸正方向平移,若平移后的線段O'A'與雙曲線的交點D恰為O'A'的中點,則平移距離OO'長為____.12.中國的陸地面積約為9600000km2,把9600000用科學記數(shù)法表示為.13.如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,點D為AB的中點,將△ACD繞著點C逆時針旋轉,使點A落在CB的延長線A′處,點D落在點D′處,則D′B長為_____.14.如圖,點E在正方形ABCD的邊CD上.若△ABE的面積為8,CE=3,則線段BE的長為_______.15.如圖,在△ABC中,∠C=40°,CA=CB,則△ABC的外角∠ABD=°.16.已知邊長為5的菱形中,對角線長為6,點在對角線上且,則的長為__________.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與BC交于點D,過點D作∠ABD=∠ADE,交AC于點E.(1)求證:DE為⊙O的切線.(2)若⊙O的半徑為,AD=,求CE的長.18.(8分)在2018年韶關市開展的“善美韶關?情暖三江”的志愿者系列括動中,某志愿者組織籌集了部分資金,計劃購買甲、乙兩種書包若干個送給貧困山區(qū)的學生,已知每個甲種書包的價格比每個乙種書包的價格貴10元,用350元購買甲種書包的個數(shù)恰好與用300元購買乙種書包的個數(shù)相同,求甲、乙兩種書包每個的價格各是多少元?19.(8分)如圖,已知矩形ABCD中,AB=3,AD=m,動點P從點D出發(fā),在邊DA上以每秒1個單位的速度向點A運動,連接CP,作點D關于直線PC的對稱點E,設點P的運動時間為t(s).(1)若m=5,求當P,E,B三點在同一直線上時對應的t的值.(2)已知m滿足:在動點P從點D到點A的整個運動過程中,有且只有一個時刻t,使點E到直線BC的距離等于2,求所有這樣的m的取值范圍.20.(8分)在平面直角坐標系xOy中,一次函數(shù)的圖象與y軸交于點,與反比例函數(shù)
的圖象交于點.求反比例函數(shù)的表達式和一次函數(shù)表達式;若點C是y軸上一點,且,直接寫出點C的坐標.21.(8分)已知AC=DC,AC⊥DC,直線MN經(jīng)過點A,作DB⊥MN,垂足為B,連接CB.(1)直接寫出∠D與∠MAC之間的數(shù)量關系;(2)①如圖1,猜想AB,BD與BC之間的數(shù)量關系,并說明理由;②如圖2,直接寫出AB,BD與BC之間的數(shù)量關系;(3)在MN繞點A旋轉的過程中,當∠BCD=30°,BD=時,直接寫出BC的值.22.(10分)矩形AOBC中,OB=4,OA=1.分別以OB,OA所在直線為x軸,y軸,建立如圖1所示的平面直角坐標系.F是BC邊上一個動點(不與B,C重合),過點F的反比例函數(shù)y=(k>0)的圖象與邊AC交于點E。當點F運動到邊BC的中點時,求點E的坐標;連接EF,求∠EFC的正切值;如圖2,將△CEF沿EF折疊,點C恰好落在邊OB上的點G處,求此時反比例函數(shù)的解析式.23.(12分)2018年“植樹節(jié)”前夕,某小區(qū)為綠化環(huán)境,購進200棵柏樹苗和120棵棗樹苗,且兩種樹苗所需費用相同.每棵棗樹苗的進價比每棵柏樹苗的進價的2倍少5元,每棵柏樹苗的進價是多少元.24.如圖所示,直線y=x+2與雙曲線y=相交于點A(2,n),與x軸交于點C.求雙曲線解析式;點P在x軸上,如果△ACP的面積為5,求點P的坐標.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
只要證明△OCB是等邊三角形,可得∠CDB=∠COB即可解決問題.【詳解】如圖,連接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等邊三角形,∴∠COB=60°,∴∠CDB=∠COB=30°,故選B.【點睛】本題考查圓周角定理,等邊三角形的判定等知識,解題的關鍵是學會利用數(shù)形結合的首先解決問題,屬于中考??碱}型.2、C【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A是軸對稱圖形,不是中心對稱圖形;B,C,D是軸對稱圖形,也是中心對稱圖形.故選:C.【點睛】掌握中心對稱圖形與軸對稱圖形的概念:軸對稱圖形:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形;中心對稱圖形:在同一平面內(nèi),如果把一個圖形繞某一點旋轉180°,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.3、A【解析】根據(jù)同底數(shù)冪的乘法,同底數(shù)冪的除法,合并同類項,冪的乘方與積的乘方運算法則逐一計算作出判斷:A、x?x4=x5,原式計算正確,故本選項正確;B、x6÷x3=x3,原式計算錯誤,故本選項錯誤;C、3x2﹣x2=2x2,原式計算錯誤,故本選項錯誤;D、(2x2)3=8x,原式計算錯誤,故本選項錯誤.故選A.4、A【解析】【分析】根據(jù)一次函數(shù)性質:中,當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.由-2<0得,當x12時,y1>y2.【詳解】因為,點A(1,a)和點B(4,b)在直線y=-2x+m上,-2<0,所以,y隨x的增大而減小.因為,1<4,所以,a>b.故選A【點睛】本題考核知識點:一次函數(shù)性質.解題關鍵點:判斷一次函數(shù)中y與x的大小關系,關鍵看k的符號.5、D【解析】
當k+1=0時,函數(shù)為一次函數(shù)必與x軸有一個交點;當k+1≠0時,函數(shù)為二次函數(shù),根據(jù)條件可知其判別式為0,可求得k的值.【詳解】當k-1=0,即k=1時,函數(shù)為y=-4x+4,與x軸只有一個交點;當k-1≠0,即k≠1時,由函數(shù)與x軸只有一個交點可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,綜上可知k的值為1或2,故選D.【點睛】本題主要考查函數(shù)與x軸的交點,掌握二次函數(shù)與x軸只有一個交點的條件是解題的關鍵,解決本題時注意考慮一次函數(shù)和二次函數(shù)兩種情況.6、B【解析】
根據(jù)反比例函數(shù)中k的幾何意義,過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|解答即可.【詳解】解:A、圖形面積為|k|=1;B、陰影是梯形,面積為6;C、D面積均為兩個三角形面積之和,為2×(|k|)=1.故選B.【點睛】主要考查了反比例函數(shù)中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€知識點;這里體現(xiàn)了數(shù)形結合的思想,做此類題一定要正確理解k的幾何意義.圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系即S=|k|.7、C【解析】
先把能化簡的數(shù)化簡,然后根據(jù)無理數(shù)的定義逐一判斷即可得.【詳解】A、3.14是有理數(shù);B、1.01001是有理數(shù);C、是無理數(shù);D、是分數(shù),為有理數(shù);故選C.【點睛】本題主要考查無理數(shù)的定義,屬于簡單題.8、B【解析】
根據(jù)不等式的性質:先移項,再合并即可解得不等式的解集,最后將解集表示在數(shù)軸上即可.【詳解】解:解:移項得,
x≤3-2,
合并得,
x≤1;
在數(shù)軸上表示應包括1和它左邊的部分,如下:;
故選:B.【點睛】本題考查了一元一次不等式的解集的求法及在數(shù)軸上表示不等式的解集,注意數(shù)軸上包括的端點實心點表示.9、D【解析】
根據(jù)拋物線開口方向得到,根據(jù)對稱軸得到,根據(jù)拋物線與軸的交點在軸下方得到,所以;時,由圖像可知此時,所以;由對稱軸,可得;當時,由圖像可知此時,即,將代入可得.【詳解】①根據(jù)拋物線開口方向得到,根據(jù)對稱軸得到,根據(jù)拋物線與軸的交點在軸下方得到,所以,故①正確.②時,由圖像可知此時,即,故②正確.③由對稱軸,可得,所以錯誤,故③錯誤;④當時,由圖像可知此時,即,將③中變形為,代入可得,故④正確.故答案選D.【點睛】本題考查了二次函數(shù)的圖像與系數(shù)的關系,注意用數(shù)形結合的思想解決問題。10、B【解析】
將k看做已知數(shù)求出用k表示的x與y,代入2x+3y=6中計算即可得到k的值.【詳解】解:,①②得:,即,將代入①得:,即,將,代入得:,解得:.故選:.【點睛】此題考查了二元一次方程組的解,以及二元一次方程的解,方程的解即為能使方程左右兩邊成立的未知數(shù)的值.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】
直接利用平移的性質以及反比例函數(shù)圖象上點的坐標性質得出D點坐標進而得出答案.【詳解】∵點A(2,2)在雙曲線上,∴k=4,∵平移后的線段O'A'與雙曲線的交點D恰為O'A'的中點,∴D點縱坐標為:1,∴DE=1,O′E=1,∴D點橫坐標為:x==4,∴OO′=1,故答案為1.【點睛】本題考查了反比例函數(shù)圖象上的性質,正確得出D點坐標是解題關鍵.12、9.6×1.【解析】
將9600000用科學記數(shù)法表示為9.6×1.故答案為9.6×1.13、.【解析】
試題分析:解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵點D為AB的中點,∴CD=AD=BD=AB=2.5,過D′作D′E⊥BC,∵將△ACD繞著點C逆時針旋轉,使點A落在CB的延長線A′處,點D落在點D′處,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案為.考點:旋轉的性質.14、5.【解析】
試題解析:過E作EM⊥AB于M,∵四邊形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面積為8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE==5.考點:1.正方形的性質;2.三角形的面積;3.勾股定理.15、110【解析】試題解析:解:∵∠C=40°,CA=CB,∴∠A=∠ABC=70°,∴∠ABD=∠A+∠C=110°.考點:等腰三角形的性質、三角形外角的性質點評:本題主要考查了等腰三角形的性質、三角形外角的性質.等腰三角形的兩個底角相等;三角形的外角等于與它不相鄰的兩個內(nèi)角之和.16、3或1【解析】
菱形ABCD中,邊長為1,對角線AC長為6,由菱形的性質及勾股定理可得AC⊥BD,BO=4,分當點E在對角線交點左側時(如圖1)和當點E在對角線交點左側時(如圖2)兩種情況求BE得長即可.【詳解】解:當點E在對角線交點左側時,如圖1所示:∵菱形ABCD中,邊長為1,對角線AC長為6,∴AC⊥BD,BO==4,∵tan∠EAC=,解得:OE=1,∴BE=BO﹣OE=4﹣1=3,當點E在對角線交點左側時,如圖2所示:∵菱形ABCD中,邊長為1,對角線AC長為6,∴AC⊥BD,BO==4,∵tan∠EAC=,解得:OE=1,∴BE=BO﹣OE=4+1=1,故答案為3或1.【點睛】本題主要考查了菱形的性質,解決問題時要注意分當點E在對角線交點左側時和當點E在對角線交點左側時兩種情況求BE得長.三、解答題(共8題,共72分)17、(1)證明見解析;(2)CE=1.【解析】
(1)求出∠ADO+∠ADE=90°,推DE⊥OD,根據(jù)切線的判定推出即可;(2)求出CD,AC的長,證△CDE∽△CAD,得出比例式,求出結果即可.【詳解】(1)連接OD,∵AB是直徑,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵OB=OD,∴∠BDO=∠ABD,∵∠ABD=∠ADE,∴∠ADO+∠ADE=90°,即,OD⊥DE,∵OD為半徑,∴DE為⊙O的切線;(2)∵⊙O的半徑為,∴AB=2OA==AC,∵∠ADB=90°,∴∠ADC=90°,在Rt△ADC中,由勾股定理得:DC===5,∵∠ODE=∠ADC=90°,∠ODB=∠ABD=∠ADE,∴∠EDC=∠ADO,∵OA=OD,∴∠ADO=∠OAD,∵AB=AC,AD⊥BC,∴∠OAD=∠CAD,∴∠EDC=∠CAD,∵∠C=∠C,∴△CDE∽△CAD,∴=,∴=,解得:CE=1.【點睛】本題考查了等腰三角形的性質與切線的判定,解題的關鍵是熟練的掌握等腰三角形的性質與切線的判定.18、每件乙種商品的價格為1元,每件甲種商品的價格為70元【解析】
設每件甲種商品的價格為x元,則每件乙種商品的價格為(x-10)元,根據(jù)數(shù)量=總價÷單價結合用350元購買甲種書包的個數(shù)恰好與用300元購買乙種書包的個數(shù)相同,即可得出關于x的分式方程,解之并檢驗后即可得出結論.【詳解】解:設每件甲種商品的價格為x元,則每件乙種商品的價格為(x﹣10)元,根據(jù)題意得:,解得:x=70,經(jīng)檢驗,x=70是原方程的解,∴x﹣10=1.答:每件乙種商品的價格為1元,每件甲種商品的價格為70元.【點睛】本題考查了分式方程的應用,解題的關鍵是:根據(jù)數(shù)量=總價÷單價,列出分式方程.19、(1)1;(1)≤m<.【解析】
(1)在Rt△ABP中利用勾股定理即可解決問題;(1)分兩種情形求出AD的值即可解決問題:①如圖1中,當點P與A重合時,點E在BC的下方,點E到BC的距離為1.②如圖3中,當點P與A重合時,點E在BC的上方,點E到BC的距離為1.【詳解】解:(1):(1)如圖1中,設PD=t.則PA=5-t.
∵P、B、E共線,
∴∠BPC=∠DPC,
∵AD∥BC,
∴∠DPC=∠PCB,
∴∠BPC=∠PCB,
∴BP=BC=5,
在Rt△ABP中,∵AB1+AP1=PB1,
∴31+(5-t)1=51,
∴t=1或9(舍棄),∴t=1時,B、E、P共線.(1)如圖1中,當點P與A重合時,點E在BC的下方,點E到BC的距離為1.作EQ⊥BC于Q,EM⊥DC于M.則EQ=1,CE=DC=3易證四邊形EMCQ是矩形,∴CM=EQ=1,∠M=90°,∴EM=,∵∠DAC=∠EDM,∠ADC=∠M,∴△ADC∽△DME,∴∴∴AD=,如圖3中,當點P與A重合時,點E在BC的上方,點E到BC的距離為1.作EQ⊥BC于Q,延長QE交AD于M.則EQ=1,CE=DC=3在Rt△ECQ中,QC=DM=,由△DME∽△CDA,∴∴,∴AD=,綜上所述,在動點P從點D到點A的整個運動過程中,有且只有一個時刻t,使點E到直線BC的距離等于1,這樣的m的取值范圍≤m<.【點睛】本題考查四邊形綜合問題,根據(jù)題意作出圖形,熟練運用勾股定理和相似三角形的性質是本題的關鍵.20、(1)y=,y=-x+1;(2)C(0,3+1)或C(0,1-3).【解析】
(1)依據(jù)一次函數(shù)的圖象與軸交于點,與反比例函數(shù)的圖象交于點,即可得到反比例函數(shù)的表達式和一次函數(shù)表達式;(2)由,可得:,即可得到,再根據(jù),可得或,即可得出點的坐標.【詳解】(1)∵雙曲線過,將代入,解得:.∴所求反比例函數(shù)表達式為:.∵點,點在直線上,∴,,∴,∴所求一次函數(shù)表達式為.(2)由,可得:,∴.又∵,∴或,∴,或,.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)、一次函數(shù)的解析式和反比例函數(shù)與一次函數(shù)的交點問題.此題難度適中,注意掌握數(shù)形結合思想的應用.21、(1)相等或互補;(2)①BD+AB=BC;②AB﹣BD=BC;(3)BC=或.【解析】
(1)分為點C,D在直線MN同側和點C,D在直線MN兩側,兩種情況討論即可解題,(2)①作輔助線,證明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解題,②在射線AM上截取AF=BD,連接CF,證明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解題,(3)分為當點C,D在直線MN同側,當點C,D在直線MN兩側,兩種情況解題即可,見詳解.【詳解】解:(1)相等或互補;理由:當點C,D在直線MN同側時,如圖1,∵AC⊥CD,BD⊥MN,∴∠ACD=∠BDC=90°,在四邊形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,∵∠BAC+∠CAM=180°,∴∠CAM=∠D;當點C,D在直線MN兩側時,如圖2,∵∠ACD=∠ABD=90°,∠AEC=∠BED,∴∠CAB=∠D,∵∠CAB+∠CAM=180°,∴∠CAM+∠D=180°,即:∠D與∠MAC之間的數(shù)量是相等或互補;(2)①猜想:BD+AB=BC如圖3,在射線AM上截取AF=BD,連接CF.又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=∵AF+AB=BF=∴BD+AB=;②如圖2,在射線AM上截取AF=BD,連接CF,又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=∵AB﹣AF=BF=∴AB﹣BD=;(3)①當點C,D在直線MN同側時,如圖3﹣1,由(2)①知,△ACF≌△DCB,∴CF=BC,∠ACF=∠ACD=90°,∴∠ABC=45°,∵∠ABD=90°,∴∠CBD=45°,過點D作DG⊥BC于G,在Rt△BDG中,∠CBD=45°,BD=,∴DG=BG=1,在Rt△CGD中,∠BCD=30°,∴CG=DG=,∴BC=CG+BG=+1,②當點C,D在直線MN兩側時,如圖2﹣1,過點D作DG⊥CB交CB的延長線于G,同①的方法得,BG=1,CG=,∴BC=CG﹣BG=﹣1即:BC=或,【點睛】本題考查了三角形中的邊長關系,等腰直角三角形的性質,中等難度,分類討論與作輔助線是解題關鍵.22、(1)E(2,1);(2);(1).【解析】
(1)先確定出點C坐標,進而得出點F坐標,即可得出結論;(2)先確定出點F的橫坐標,進而表示出點F的坐標,得出CF,同理表示出CE,即可得出結論;(1)先判斷出△EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出結論.【詳解】(1)∵OA=1,OB=4,∴B(4,0),C(4,1),∵F是BC的中點,∴F(4,),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廠房長期租賃合同書
- 大數(shù)據(jù)智能營銷服務合同
- 環(huán)保設施建設施工合同
- 智慧物流園區(qū)運營服務協(xié)議
- 院校與企業(yè)戰(zhàn)略合作協(xié)議書
- 房屋交易居間合同
- 合同資料員勞動合同
- 做時間的主人活動方案
- 個人勞務分包合同協(xié)議書
- 市場拓展策略實施方案
- 中小學智慧校園建設標準(試行)
- 混凝土質量通病及防治方法
- 王洪圖黃帝內(nèi)經(jīng)80課時講稿
- 英語課堂游戲PPT-英語游戲4個PPT-(切西瓜-打地鼠-開火車-植物大戰(zhàn)僵尸)
- 大學物理光學總結-大學物理光學知識點總結課件
- 關于領導干部報告?zhèn)€人有關事項的規(guī)定全文
- 個人借條電子版模板
- 物業(yè)公司特色服務、日常增值服務項目供參考
- 創(chuàng)新創(chuàng)業(yè)實務PPT全套完整教學課件
- 工業(yè)企業(yè)電源快速切換裝置設計配置導則
- 護士服裝史話
評論
0/150
提交評論