版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點(diǎn),AF與DE交于點(diǎn)M,O為BD的中點(diǎn),則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結(jié)論的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤2.在Rt△ABC中,∠C=90°,AC=1,BC=3,則∠A的正切值為()A.3 B. C. D.3.我們知道:四邊形具有不穩(wěn)定性.如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為4的正方形ABCD的邊AB在x軸上,AB的中點(diǎn)是坐標(biāo)原點(diǎn)O,固定點(diǎn)A,B,把正方形沿箭頭方向推,使點(diǎn)D落在y軸正半軸上點(diǎn)D′處,則點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為()A.(,2) B.(4,1) C.(4,) D.(4,)4.如圖,已知BD與CE相交于點(diǎn)A,ED∥BC,AB=8,AC=12,AD=6,那么AE的長(zhǎng)等于()A.4 B.9 C.12 D.165.如圖,某計(jì)算機(jī)中有、、三個(gè)按鍵,以下是這三個(gè)按鍵的功能.(1).:將熒幕顯示的數(shù)變成它的正平方根,例如:熒幕顯示的數(shù)為49時(shí),按下后會(huì)變成1.(2).:將熒幕顯示的數(shù)變成它的倒數(shù),例如:熒幕顯示的數(shù)為25時(shí),按下后會(huì)變成0.2.(3).:將熒幕顯示的數(shù)變成它的平方,例如:熒幕顯示的數(shù)為6時(shí),按下后會(huì)變成3.若熒幕顯示的數(shù)為100時(shí),小劉第一下按,第二下按,第三下按,之后以、、的順序輪流按,則當(dāng)他按了第100下后熒幕顯示的數(shù)是多少()A.0.01 B.0.1 C.10 D.1006.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過(guò)點(diǎn)(0,1)和(﹣1,0).下列結(jié)論:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤當(dāng)x>﹣1時(shí),y>0,其中正確結(jié)論的個(gè)數(shù)是A.5個(gè) B.4個(gè) C.3個(gè) D.2個(gè)7.a(chǎn)≠0,函數(shù)y=與y=﹣ax2+a在同一直角坐標(biāo)系中的大致圖象可能是()A. B.C. D.8.如圖,正六邊形A1B1C1D1E1F1的邊長(zhǎng)為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進(jìn)行下去,A11B11C11D11E11F11的邊長(zhǎng)為()A. B. C. D.9.下列立體圖形中,主視圖是三角形的是()A. B. C. D.10.如圖,正方形ABCD內(nèi)接于圓O,AB=4,則圖中陰影部分的面積是()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,△ABC中,∠A=80°,∠B=40°,BC的垂直平分線交AB于點(diǎn)D,聯(lián)結(jié)DC.如果AD=2,BD=6,那么△ADC的周長(zhǎng)為.12.若一段弧的半徑為24,所對(duì)圓心角為60°,則這段弧長(zhǎng)為____.13.一個(gè)不透明的袋中裝有除顏色外均相同的8個(gè)黑球、4個(gè)白球和若干個(gè)紅球.每次搖勻后隨機(jī)摸出一個(gè)球,記下顏色后再放回袋中,通過(guò)大量重復(fù)摸球試驗(yàn)后,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定于0.4,由此可估計(jì)袋中約有紅球_____個(gè).14.如圖,已知圓錐的底面⊙O的直徑BC=6,高OA=4,則該圓錐的側(cè)面展開圖的面積為.15.因式分解:a2﹣a=_____.16.七巧板是我們祖先的一項(xiàng)創(chuàng)造,被譽(yù)為“東方魔板”,如圖所示是一副七巧板,若已知S△BIC=1,據(jù)七巧板制作過(guò)程的認(rèn)識(shí),求出平行四邊形EFGH_____.三、解答題(共8題,共72分)17.(8分)觀察下列各個(gè)等式的規(guī)律:第一個(gè)等式:=1,第二個(gè)等式:=2,第三個(gè)等式:=3…請(qǐng)用上述等式反映出的規(guī)律解決下列問(wèn)題:直接寫出第四個(gè)等式;猜想第n個(gè)等式(用n的代數(shù)式表示),并證明你猜想的等式是正確的.18.(8分)如圖,將等腰直角三角形紙片ABC對(duì)折,折痕為CD.展平后,再將點(diǎn)B折疊在邊AC上(不與A、C重合),折痕為EF,點(diǎn)B在AC上的對(duì)應(yīng)點(diǎn)為M,設(shè)CD與EM交于點(diǎn)P,連接PF.已知BC=1.(1)若M為AC的中點(diǎn),求CF的長(zhǎng);(2)隨著點(diǎn)M在邊AC上取不同的位置,①△PFM的形狀是否發(fā)生變化?請(qǐng)說(shuō)明理由;②求△PFM的周長(zhǎng)的取值范圍.19.(8分)如圖,AB為圓O的直徑,點(diǎn)C為圓O上一點(diǎn),若∠BAC=∠CAM,過(guò)點(diǎn)C作直線l垂直于射線AM,垂足為點(diǎn)D.(1)試判斷CD與圓O的位置關(guān)系,并說(shuō)明理由;(2)若直線l與AB的延長(zhǎng)線相交于點(diǎn)E,圓O的半徑為3,并且∠CAB=30°,求AD的長(zhǎng).20.(8分)如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).(1)求拋物線的表達(dá)式;(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;(3)點(diǎn)E時(shí)線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).21.(8分)如圖,在△ABC中,AB=AC,點(diǎn)P、D分別是BC、AC邊上的點(diǎn),且∠APD=∠B,求證:AC?CD=CP?BP;若AB=10,BC=12,當(dāng)PD∥AB時(shí),求BP的長(zhǎng).22.(10分)如圖1,點(diǎn)P是平面直角坐標(biāo)系中第二象限內(nèi)的一點(diǎn),過(guò)點(diǎn)P作PA⊥y軸于點(diǎn)A,點(diǎn)P繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到點(diǎn)P',我們稱點(diǎn)P'是點(diǎn)P的“旋轉(zhuǎn)對(duì)應(yīng)點(diǎn)”.(1)若點(diǎn)P(﹣4,2),則點(diǎn)P的“旋轉(zhuǎn)對(duì)應(yīng)點(diǎn)”P'的坐標(biāo)為;若點(diǎn)P的“旋轉(zhuǎn)對(duì)應(yīng)點(diǎn)”P'的坐標(biāo)為(﹣5,16)則點(diǎn)P的坐標(biāo)為;若點(diǎn)P(a,b),則點(diǎn)P的“旋轉(zhuǎn)對(duì)應(yīng)點(diǎn)”P'的坐標(biāo)為;(2)如圖2,點(diǎn)Q是線段AP'上的一點(diǎn)(不與A、P'重合),點(diǎn)Q的“旋轉(zhuǎn)對(duì)應(yīng)點(diǎn)”是點(diǎn)Q',連接PP'、QQ',求證:PP'∥QQ';(3)點(diǎn)P與它的“旋轉(zhuǎn)對(duì)應(yīng)點(diǎn)”P'的連線所在的直線經(jīng)過(guò)點(diǎn)(,6),求直線PP'與x軸的交點(diǎn)坐標(biāo).23.(12分)如圖,⊙O是△ABC的外接圓,點(diǎn)O在BC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BD、CD,過(guò)點(diǎn)D作BC的平行線與AC的延長(zhǎng)線相交于點(diǎn)P.求證:PD是⊙O的切線;求證:△ABD∽△DCP;當(dāng)AB=5cm,AC=12cm時(shí),求線段PC的長(zhǎng).24.先化簡(jiǎn),再求值:2(m﹣1)2+3(2m+1),其中m是方程2x2+2x﹣1=0的根
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據(jù)正方形的性質(zhì)可得AB=BC=AD,∠ABC=∠BAD=90°,再根據(jù)中點(diǎn)定義求出AE=BF,然后利用“邊角邊”證明△ABF和△DAE全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據(jù)鄰補(bǔ)角的定義可得∠AME=90°,從而判斷①正確;根據(jù)中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出②錯(cuò)誤;根據(jù)直角三角形的性質(zhì)判斷出△AED、△MAD、△MEA三個(gè)三角形相似,利用相似三角形對(duì)應(yīng)邊成比例可得,然后求出MD=2AM=4EM,判斷出④正確,設(shè)正方形ABCD的邊長(zhǎng)為2a,利用勾股定理列式求出AF,再根據(jù)相似三角形對(duì)應(yīng)邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出⑤正確;過(guò)點(diǎn)M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,過(guò)點(diǎn)M作GH∥AB,過(guò)點(diǎn)O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根據(jù)正方形的性質(zhì)求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出③正確.【詳解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分別為邊AB,BC的中點(diǎn),
∴AE=BF=BC,
在△ABF和△DAE中,,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正確;
∵DE是△ABD的中線,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②錯(cuò)誤;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正確;
設(shè)正方形ABCD的邊長(zhǎng)為2a,則BF=a,
在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴,
即,
解得AM=
∴MF=AF-AM=,
∴AM=MF,故⑤正確;
如圖,過(guò)點(diǎn)M作MN⊥AB于N,
則即解得MN=,AN=,
∴NB=AB-AN=2a-=,
根據(jù)勾股定理,BM=過(guò)點(diǎn)M作GH∥AB,過(guò)點(diǎn)O作OK⊥GH于K,
則OK=a-=,MK=-a=,
在Rt△MKO中,MO=根據(jù)正方形的性質(zhì),BO=2a×,
∵BM2+MO2=
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正確;
綜上所述,正確的結(jié)論有①③④⑤共4個(gè).故選:D【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理的應(yīng)用,勾股定理逆定理的應(yīng)用,綜合性較強(qiáng),難度較大,仔細(xì)分析圖形并作出輔助線構(gòu)造出直角三角形與相似三角形是解題的關(guān)鍵.2、A【解析】【分析】根據(jù)銳角三角函數(shù)的定義求出即可.【詳解】∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值為=3,故選A.【點(diǎn)睛】本題考查了銳角三角函數(shù)的定義,能熟記銳角三角函數(shù)的定義的內(nèi)容是解此題的關(guān)鍵.3、D【解析】
由已知條件得到AD′=AD=4,AO=AB=2,根據(jù)勾股定理得到OD′==2,于是得到結(jié)論.【詳解】解:∵AD′=AD=4,
AO=AB=1,
∴OD′==2,
∵C′D′=4,C′D′∥AB,
∴C′(4,2),故選:D.【點(diǎn)睛】本題考查正方形的性質(zhì),坐標(biāo)與圖形的性質(zhì),勾股定理,正確的識(shí)別圖形是解題關(guān)鍵.4、B【解析】
由于ED∥BC,可證得△ABC∽△ADE,根據(jù)相似三角形所得比例線段,即可求得AE的長(zhǎng).【詳解】∵ED∥BC,∴△ABC∽△ADE,∴=,∴==,即AE=9;∴AE=9.故答案選B.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形的判定與性質(zhì).5、B【解析】
根據(jù)題中的按鍵順序確定出顯示的數(shù)即可.【詳解】解:根據(jù)題意得:=40,=0.4,0.42=0.04,=0.4,=40,402=400,400÷6=46…4,則第400次為0.4.故選B.【點(diǎn)睛】此題考查了計(jì)算器﹣數(shù)的平方,弄清按鍵順序是解本題的關(guān)鍵.6、B【解析】
解:∵二次函數(shù)y=ax3+bx+c(a≠3)過(guò)點(diǎn)(3,3)和(﹣3,3),∴c=3,a﹣b+c=3.①∵拋物線的對(duì)稱軸在y軸右側(cè),∴,x>3.∴a與b異號(hào).∴ab<3,正確.②∵拋物線與x軸有兩個(gè)不同的交點(diǎn),∴b3﹣4ac>3.∵c=3,∴b3﹣4a>3,即b3>4a.正確.④∵拋物線開口向下,∴a<3.∵ab<3,∴b>3.∵a﹣b+c=3,c=3,∴a=b﹣3.∴b﹣3<3,即b<3.∴3<b<3,正確.③∵a﹣b+c=3,∴a+c=b.∴a+b+c=3b>3.∵b<3,c=3,a<3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3.∴3<a+b+c<3,正確.⑤拋物線y=ax3+bx+c與x軸的一個(gè)交點(diǎn)為(﹣3,3),設(shè)另一個(gè)交點(diǎn)為(x3,3),則x3>3,由圖可知,當(dāng)﹣3<x<x3時(shí),y>3;當(dāng)x>x3時(shí),y<3.∴當(dāng)x>﹣3時(shí),y>3的結(jié)論錯(cuò)誤.綜上所述,正確的結(jié)論有①②③④.故選B.7、D【解析】
分a>0和a<0兩種情況分類討論即可確定正確的選項(xiàng)【詳解】當(dāng)a>0時(shí),函數(shù)y=的圖象位于一、三象限,y=﹣ax2+a的開口向下,交y軸的正半軸,沒(méi)有符合的選項(xiàng),當(dāng)a<0時(shí),函數(shù)y=的圖象位于二、四象限,y=﹣ax2+a的開口向上,交y軸的負(fù)半軸,D選項(xiàng)符合;故選D.【點(diǎn)睛】本題考查了反比例函數(shù)的圖象及二次函數(shù)的圖象的知識(shí),解題的關(guān)鍵是根據(jù)比例系數(shù)的符號(hào)確定其圖象的位置,難度不大.8、A【解析】分析:連接OE1,OD1,OD2,如圖,根據(jù)正六邊形的性質(zhì)得∠E1OD1=60°,則△E1OD1為等邊三角形,再根據(jù)切線的性質(zhì)得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六邊形的邊長(zhǎng)等于它的半徑得到正六邊形A2B2C2D2E2F2的邊長(zhǎng)=×2,同理可得正六邊形A3B3C3D3E3F3的邊長(zhǎng)=()2×2,依此規(guī)律可得正六邊形A11B11C11D11E11F11的邊長(zhǎng)=()10×2,然后化簡(jiǎn)即可.詳解:連接OE1,OD1,OD2,如圖,∵六邊形A1B1C1D1E1F1為正六邊形,∴∠E1OD1=60°,∴△E1OD1為等邊三角形,∵正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六邊形A2B2C2D2E2F2的邊長(zhǎng)=×2,同理可得正六邊形A3B3C3D3E3F3的邊長(zhǎng)=()2×2,則正六邊形A11B11C11D11E11F11的邊長(zhǎng)=()10×2=.故選A.點(diǎn)睛:本題考查了正多邊形與圓的關(guān)系:把一個(gè)圓分成n(n是大于2的自然數(shù))等份,依次連接各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正多邊形,這個(gè)圓叫做這個(gè)正多邊形的外接圓.記住正六邊形的邊長(zhǎng)等于它的半徑.9、A【解析】
考查簡(jiǎn)單幾何體的三視圖.根據(jù)從正面看得到的圖形是主視圖,可得圖形的主視圖【詳解】A、圓錐的主視圖是三角形,符合題意;B、球的主視圖是圓,不符合題意;C、圓柱的主視圖是矩形,不符合題意;D、正方體的主視圖是正方形,不符合題意.故選A.【點(diǎn)睛】主視圖是從前往后看,左視圖是從左往右看,俯視圖是從上往下看10、B【解析】
連接OA、OB,利用正方形的性質(zhì)得出OA=ABcos45°=2,根據(jù)陰影部分的面積=S⊙O-S正方形ABCD列式計(jì)算可得.【詳解】解:連接OA、OB,∵四邊形ABCD是正方形,∴∠AOB=90°,∠OAB=45°,∴OA=ABcos45°=4×=2,所以陰影部分的面積=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.故選B.【點(diǎn)睛】本題主要考查扇形的面積計(jì)算,解題的關(guān)鍵是熟練掌握正方形的性質(zhì)和圓的面積公式.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1.【解析】試題分析:由BC的垂直平分線交AB于點(diǎn)D,可得CD=BD=6,又由等邊對(duì)等角,可求得∠BCD的度數(shù),繼而求得∠ADC的度數(shù),則可判定△ACD是等腰三角形,繼而求得答案.試題解析:∵BC的垂直平分線交AB于點(diǎn)D,∴CD=BD=6,∴∠DCB=∠B=40°,∴∠ADC=∠B+∠BCD=80°,∴∠ADC=∠A=80°,∴AC=CD=6,∴△ADC的周長(zhǎng)為:AD+DC+AC=2+6+6=1.考點(diǎn):1.線段垂直平分線的性質(zhì);2.等腰三角形的判定與性質(zhì).12、8π【解析】試題分析:∵弧的半徑為24,所對(duì)圓心角為60°,∴弧長(zhǎng)為l==8π.故答案為8π.【考點(diǎn)】弧長(zhǎng)的計(jì)算.13、8【解析】試題分析:設(shè)紅球有x個(gè),根據(jù)概率公式可得,解得:x=8.考點(diǎn):概率.14、15π.【解析】試題分析:∵OB=BC=3,OA=4,由勾股定理,AB=5,側(cè)面展開圖的面積為:×6π×5=15π.故答案為15π.考點(diǎn):圓錐的計(jì)算.15、a(a﹣1)【解析】
直接提取公因式a,進(jìn)而分解因式得出答案【詳解】a2﹣a=a(a﹣1).故答案為a(a﹣1).【點(diǎn)睛】此題考查公因式,難度不大16、1【解析】
根據(jù)七巧板的性質(zhì)可得BI=IC=CH=HE,因?yàn)镾△BIC=1,∠BIC=90°,可求得BI=IC=,BC=1,在求得點(diǎn)G到EF的距離為sin45°,根據(jù)平行四邊形的面積即可求解.【詳解】由七巧板性質(zhì)可知,BI=IC=CH=HE.又∵S△BIC=1,∠BIC=90°,∴BI?IC=1,∴BI=IC=,∴BC==1,∵EF=BC=1,F(xiàn)G=EH=BI=,∴點(diǎn)G到EF的距離為:,∴平行四邊形EFGH的面積=EF?=1×=1.故答案為1【點(diǎn)睛】本題考查了七巧板的性質(zhì)、等腰直角三角形的性質(zhì)及平行四邊形的面積公式,熟知七巧板的性質(zhì)是解決問(wèn)題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)=4;(2)=n.【解析】
試題分析:(1)根據(jù)題目中的式子的變化規(guī)律可以寫出第四個(gè)等式;(2)根據(jù)題目中的式子的變化規(guī)律可以猜想出第n等式并加以證明.試題解析:解:(1)由題目中式子的變化規(guī)律可得,第四個(gè)等式是:=4;(2)第n個(gè)等式是:=n.證明如下:∵===n∴第n個(gè)等式是:=n.點(diǎn)睛:本題考查規(guī)律型:數(shù)字的變化類,解答本題的關(guān)鍵是明確題目中式子的變化規(guī)律,求出相應(yīng)的式子.18、(1)CF=;(2)①△PFM的形狀是等腰直角三角形,不會(huì)發(fā)生變化,理由見(jiàn)解析;②△PFM的周長(zhǎng)滿足:2+2<(1+)y<1+1.【解析】
(1)由折疊的性質(zhì)可知,F(xiàn)B=FM,設(shè)CF=x,則FB=FM=1﹣x,在Rt△CFM中,根據(jù)FM2=CF2+CM2,構(gòu)建方程即可解決問(wèn)題;(2)①△PFM的形狀是等腰直角三角形,想辦法證明△POF∽△MOC,可得∠PFO=∠MCO=15°,延長(zhǎng)即可解決問(wèn)題;②設(shè)FM=y,由勾股定理可知:PF=PM=y,可得△PFM的周長(zhǎng)=(1+)y,由2<y<1,可得結(jié)論.【詳解】(1)∵M(jìn)為AC的中點(diǎn),∴CM=AC=BC=2,由折疊的性質(zhì)可知,F(xiàn)B=FM,設(shè)CF=x,則FB=FM=1﹣x,在Rt△CFM中,F(xiàn)M2=CF2+CM2,即(1﹣x)2=x2+22,解得,x=,即CF=;(2)①△PFM的形狀是等腰直角三角形,不會(huì)發(fā)生變化,理由如下:由折疊的性質(zhì)可知,∠PMF=∠B=15°,∵CD是中垂線,∴∠ACD=∠DCF=15°,∵∠MPC=∠OPM,∴△POM∽△PMC,∴=,∴=,∵∠EMC=∠AEM+∠A=∠CMF+∠EMF,∴∠AEM=∠CMF,∵∠DPE+∠AEM=90°,∠CMF+∠MFC=90°,∠DPE=∠MPC,∴∠DPE=∠MFC,∠MPC=∠MFC,∵∠PCM=∠OCF=15°,∴△MPC∽△OFC,∴,∴,∴,∵∠POF=∠MOC,∴△POF∽△MOC,∴∠PFO=∠MCO=15°,∴△PFM是等腰直角三角形;②∵△PFM是等腰直角三角形,設(shè)FM=y,由勾股定理可知:PF=PM=y,∴△PFM的周長(zhǎng)=(1+)y,∵2<y<1,∴△PFM的周長(zhǎng)滿足:2+2<(1+)y<1+1.【點(diǎn)睛】本題考查三角形綜合題、等腰直角三角形的性質(zhì)和判定、翻折變換、相似三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是正確尋找相似三角形解決問(wèn)題,學(xué)會(huì)利用參數(shù)解決問(wèn)題,屬于中考常考題型.19、(1)CD與圓O的位置關(guān)系是相切,理由詳見(jiàn)解析;(2)AD=.【解析】
(1)連接OC,求出OC和AD平行,求出OC⊥CD,根據(jù)切線的判定得出即可;(2)連接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.【詳解】(1)CD與圓O的位置關(guān)系是相切,理由是:連接OC,∵OA=OC,∴∠OCA=∠CAB,∵∠CAB=∠CAD,∴∠OCA=∠CAD,∴OC∥AD,∵CD⊥AD,∴OC⊥CD,∵OC為半徑,∴CD與圓O的位置關(guān)系是相切;(2)連接BC,∵AB是⊙O的直徑,∴∠BCA=90°,∵圓O的半徑為3,∴AB=6,∵∠CAB=30°,∴∵∠BCA=∠CDA=90°,∠CAB=∠CAD,∴△CAB∽△DAC,∴∴∴【點(diǎn)睛】本題考查了切線的性質(zhì)和判定,圓周角定理,相似三角形的性質(zhì)和判定,解直角三角形等知識(shí)點(diǎn),能綜合運(yùn)用知識(shí)點(diǎn)進(jìn)行推理是解此題的關(guān)鍵.20、(1)拋物線的解析式為:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)當(dāng)點(diǎn)E運(yùn)動(dòng)到(1,1)時(shí),四邊形CDBF的面積最大,S四邊形CDBF的面積最大=.【解析】試題分析:(1)將點(diǎn)A、C的坐標(biāo)分別代入可得二元一次方程組,解方程組即可得出m、n的值;(1)根據(jù)二次函數(shù)的解析式可得對(duì)稱軸方程,由勾股定理求出CD的值,以點(diǎn)C為圓心,CD為半徑作弧交對(duì)稱軸于P1;以點(diǎn)D為圓心CD為半徑作圓交對(duì)稱軸于點(diǎn)P1,P3;作CH垂直于對(duì)稱軸與點(diǎn)H,由等腰三角形的性質(zhì)及勾股定理就可以求出結(jié)論;(3)由二次函數(shù)的解析式可求出B點(diǎn)的坐標(biāo),從而可求出BC的解析式,從而可設(shè)設(shè)E點(diǎn)的坐標(biāo),進(jìn)而可表示出F的坐標(biāo),由四邊形CDBF的面積=S△BCD+S△CEF+S△BEF可求出S與a的關(guān)系式,由二次函數(shù)的性質(zhì)就可以求出結(jié)論.試題解析:(1)∵拋物線y=﹣x1+mx+n經(jīng)過(guò)A(﹣1,0),C(0,1).解得:,∴拋物線的解析式為:y=﹣x1+x+1;(1)∵y=﹣x1+x+1,∴y=﹣(x﹣)1+,∴拋物線的對(duì)稱軸是x=.∴OD=.∵C(0,1),∴OC=1.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD為腰的等腰三角形,∴CP1=CP1=CP3=CD.作CH⊥x軸于H,∴HP1=HD=1,∴DP1=2.∴P1(,2),P1(,),P3(,﹣);(3)當(dāng)y=0時(shí),0=﹣x1+x+1∴x1=﹣1,x1=2,∴B(2,0).設(shè)直線BC的解析式為y=kx+b,由圖象,得,解得:,∴直線BC的解析式為:y=﹣x+1.如圖1,過(guò)點(diǎn)C作CM⊥EF于M,設(shè)E(a,﹣a+1),F(xiàn)(a,﹣a1+a+1),∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).∵S四邊形CDBF=S△BCD+S△CEF+S△BEF=BD?OC+EF?CM+EF?BN,=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),=﹣a1+2a+(0≤x≤2).=﹣(a﹣1)1+∴a=1時(shí),S四邊形CDBF的面積最大=,∴E(1,1).考點(diǎn):1、勾股定理;1、等腰三角形的性質(zhì);3、四邊形的面積;2、二次函數(shù)的最值21、(1)證明見(jiàn)解析;(2).【解析】(2)易證∠APD=∠B=∠C,從而可證到△ABP∽△PCD,即可得到,即AB?CD=CP?BP,由AB=AC即可得到AC?CD=CP?BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,從而可證到△BAP∽△BCA,然后運(yùn)用相似三角形的性質(zhì)即可求出BP的長(zhǎng).解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴,∴AB?CD=CP?BP.∵AB=AC,∴AC?CD=CP?BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴.∵AB=10,BC=12,∴,∴BP=.“點(diǎn)睛”本題主要考查了相似三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、平行線的性質(zhì)、三角形外角的性質(zhì)等知識(shí),把證明AC?CD=CP?BP轉(zhuǎn)化為證明AB?CD=CP?BP是解決第(1)小題的關(guān)鍵,證到∠BAP=∠C進(jìn)而得到△BAP∽△BCA是解決第(2)小題的關(guān)鍵.22、(1)(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)見(jiàn)解析;(3)直線PP'與x軸的交點(diǎn)坐標(biāo)(﹣,0)【解析】
(1)①當(dāng)P(-4,2)時(shí),OA=2,PA=4,由旋轉(zhuǎn)知,∠P'AH=30°,進(jìn)而P'H=P'A=2,AH=P'H=2,即可得出結(jié)論;②當(dāng)P'(-5,16)時(shí),確定出P'A=10,AH=5,由旋轉(zhuǎn)知,PA=PA'=10,OA=OH-AH=16-5,即可得出結(jié)論;③當(dāng)P(a,b)時(shí),同①的方法得,即可得出結(jié)論;(2)先判斷出∠BQQ'=60°,進(jìn)而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出結(jié)論;(3)先確定出yPP'=x+3,即可得出結(jié)論.【詳解】解:(1)如圖1,①當(dāng)P(﹣4,2)時(shí),∵PA⊥y軸,∴∠PAH=90°,OA=2,PA=4,由旋轉(zhuǎn)知,P'A=4,∠PAP'=60°,∴∠P'AH=30°,在Rt△P'AH中,P'H=P'A=2,∴AH=P'H=2,∴OH=OA+AH=2+2,∴P'(﹣2,2+2),②當(dāng)P'(﹣5,16)時(shí),在Rt△P'AH中,∠P'AH=30°,P'H=5,∴P'A=10,AH=5,由旋轉(zhuǎn)知,PA=PA'=10,OA=OH﹣AH=16﹣5,∴P(﹣10,16﹣5),③當(dāng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 航運(yùn)合同類型
- 提前解除物業(yè)服務(wù)合同申請(qǐng)
- 《血栓的類型和形態(tài)》課件
- 2025年吉林市貨運(yùn)資格證考試口訣
- 2025年拉薩貨運(yùn)從業(yè)資格考試試題及答案解析大全
- 2025年蘭州貨運(yùn)從業(yè)資格考試題目和答案解析
- 《氨基酸本科》課件
- 2025年徐州貨運(yùn)從業(yè)資格證模擬考試下載題
- 2025年長(zhǎng)沙貨運(yùn)從業(yè)資格證考試答案
- 幼兒園教師演講稿15篇
- 電商平臺(tái)產(chǎn)品質(zhì)量保障服務(wù)合同
- 小學(xué)生人際交往篇-做一個(gè)受歡迎的人
- 電氣工程預(yù)算課程設(shè)計(jì)
- 新蘇教版五年級(jí)科學(xué)上冊(cè)活動(dòng)手冊(cè)答案
- 教官協(xié)作服務(wù)合同
- 2024-2025學(xué)年五年級(jí)科學(xué)上冊(cè)第二單元《地球表面的變化》測(cè)試卷(教科版)
- 第八單元測(cè)試卷-2024-2025學(xué)年統(tǒng)編版語(yǔ)文三年級(jí)上冊(cè)
- 第11講 海水性質(zhì)和海水運(yùn)動(dòng)(練習(xí))(教師版) 2025年高考地理一輪復(fù)習(xí)講練測(cè)(新教材新高考)
- 專題9.9 解析幾何(2021-2023年)真題訓(xùn)練(解析版)
- GB/T 16439-2024交流伺服系統(tǒng)通用技術(shù)規(guī)范
- 2024年嬰幼兒發(fā)展引導(dǎo)員(中級(jí))職業(yè)技能鑒定考試題庫(kù)(含答案)
評(píng)論
0/150
提交評(píng)論