2022年江西省南昌市新建區(qū)第一中學高考沖刺押題(最后一卷)數(shù)學試卷含解析_第1頁
2022年江西省南昌市新建區(qū)第一中學高考沖刺押題(最后一卷)數(shù)學試卷含解析_第2頁
2022年江西省南昌市新建區(qū)第一中學高考沖刺押題(最后一卷)數(shù)學試卷含解析_第3頁
2022年江西省南昌市新建區(qū)第一中學高考沖刺押題(最后一卷)數(shù)學試卷含解析_第4頁
2022年江西省南昌市新建區(qū)第一中學高考沖刺押題(最后一卷)數(shù)學試卷含解析_第5頁
免費預覽已結束,剩余15頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.我國宋代數(shù)學家秦九韶(1202-1261)在《數(shù)書九章》(1247)一書中提出“三斜求積術”,即:以少廣求之,以小斜冪并大斜冪減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪減上,余四約之,為實;一為從隅,開平方得積.其實質是根據(jù)三角形的三邊長,,求三角形面積,即.若的面積,,,則等于()A. B. C.或 D.或2.已知集合,,則集合的真子集的個數(shù)是()A.8 B.7 C.4 D.33.已知等比數(shù)列的前項和為,若,且公比為2,則與的關系正確的是()A. B.C. D.4.若函數(shù)在時取得最小值,則()A. B. C. D.5.已知雙曲線的一條漸近線經(jīng)過圓的圓心,則雙曲線的離心率為()A. B. C. D.26.若復數(shù)滿足,則()A. B. C. D.7.已知函數(shù),關于x的方程f(x)=a存在四個不同實數(shù)根,則實數(shù)a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)8.某校為提高新入聘教師的教學水平,實行“老帶新”的師徒結對指導形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導,現(xiàn)選出3位老教師負責指導5位新入聘教師,則不同的師徒結對方式共有()種.A.360 B.240 C.150 D.1209.已知函數(shù),若不等式對任意的恒成立,則實數(shù)k的取值范圍是()A. B. C. D.10.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.11.已知,函數(shù)在區(qū)間內沒有最值,給出下列四個結論:①在上單調遞增;②③在上沒有零點;④在上只有一個零點.其中所有正確結論的編號是()A.②④ B.①③ C.②③ D.①②④12.已知二次函數(shù)的部分圖象如圖所示,則函數(shù)的零點所在區(qū)間為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù)滿足則點構成的區(qū)域的面積為____,的最大值為_________14.如果復數(shù)滿足,那么______(為虛數(shù)單位).15.如圖,、分別是雙曲線的左、右焦點,過的直線與雙曲線的兩條漸近線分別交于、兩點,若,,則雙曲線的離心率是______.16.的展開式中,常數(shù)項為______;系數(shù)最大的項是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標方程為ρ=4sin(θ+).(1)求直線l的普通方程與曲線C的直角坐標方程;(2)若直線l與曲線C交于M,N兩點,求△MON的面積.18.(12分)數(shù)列的前項和為,且.數(shù)列滿足,其前項和為.(1)求數(shù)列與的通項公式;(2)設,求數(shù)列的前項和.19.(12分)已知函數(shù).(1)設,若存在兩個極值點,,且,求證:;(2)設,在不單調,且恒成立,求的取值范圍.(為自然對數(shù)的底數(shù)).20.(12分)已知函數(shù).(1)求不等式的解集;(2)若關于的不等式在上恒成立,求實數(shù)的取值范圍.21.(12分)已知函數(shù),其中.(Ⅰ)當時,求函數(shù)的單調區(qū)間;(Ⅱ)設,求證:;(Ⅲ)若對于恒成立,求的最大值.22.(10分)某校為了解校園安全教育系列活動的成效,對全校學生進行了一次安全意識測試,根據(jù)測試成績評定“合格”“不合格”兩個等級,同時對相應等級進行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機抽取部分學生的答卷,統(tǒng)計結果及對應的頻率分布直方圖如下:等級不合格合格得分頻數(shù)624(1)由該題中頻率分布直方圖求測試成績的平均數(shù)和中位數(shù);(2)其他條件不變,在評定等級為“合格”的學生中依次抽取2人進行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概率;(3)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中抽取10人進行座談.現(xiàn)再從這10人中任選4人,記所選4人的量化總分為,求的數(shù)學期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

將,,,代入,解得,再分類討論,利用余弦弦定理求,再用平方關系求解.【詳解】已知,,,代入,得,即,解得,當時,由余弦弦定理得:,.當時,由余弦弦定理得:,.故選:C【點睛】本題主要考查余弦定理和平方關系,還考查了對數(shù)學史的理解能力,屬于基礎題.2.D【解析】

轉化條件得,利用元素個數(shù)為n的集合真子集個數(shù)為個即可得解.【詳解】由題意得,,集合的真子集的個數(shù)為個.故選:D.【點睛】本題考查了集合的化簡和運算,考查了集合真子集個數(shù)問題,屬于基礎題.3.C【解析】

在等比數(shù)列中,由即可表示之間的關系.【詳解】由題可知,等比數(shù)列中,且公比為2,故故選:C【點睛】本題考查等比數(shù)列求和公式的應用,屬于基礎題.4.D【解析】

利用輔助角公式化簡的解析式,再根據(jù)正弦函數(shù)的最值,求得在函數(shù)取得最小值時的值.【詳解】解:,其中,,,故當,即時,函數(shù)取最小值,所以,故選:D【點睛】本題主要考查輔助角公式,正弦函數(shù)的最值的應用,屬于基礎題.5.B【解析】

求出圓心,代入漸近線方程,找到的關系,即可求解.【詳解】解:,一條漸近線,故選:B【點睛】利用的關系求雙曲線的離心率,是基礎題.6.B【解析】

由題意得,,求解即可.【詳解】因為,所以.故選:B.【點睛】本題考查復數(shù)的四則運算,考查運算求解能力,屬于基礎題.7.D【解析】

原問題轉化為有四個不同的實根,換元處理令t,對g(t)進行零點個數(shù)討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當t<2時,g(t)=2ln(﹣t)(t)單調遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調遞增,在(2,+∞)上單調遞減.由,可得,即a<2.∴實數(shù)a的取值范圍是(2,2).故選:D.【點睛】此題考查方程的根與函數(shù)零點問題,關鍵在于等價轉化,將問題轉化為通過導函數(shù)討論函數(shù)單調性解決問題.8.C【解析】

可分成兩類,一類是3個新教師與一個老教師結對,其他一新一老結對,第二類兩個老教師各帶兩個新教師,一個老教師帶一個新教師,分別計算后相加即可.【詳解】分成兩類,一類是3個新教師與同一個老教師結對,有種結對結對方式,第二類兩個老教師各帶兩個新教師,有.∴共有結對方式60+90=150種.故選:C.【點睛】本題考查排列組合的綜合應用.解題關鍵確定怎樣完成新老教師結對這個事情,是先分類還是先分步,確定方法后再計數(shù).本題中有一個平均分組問題.計數(shù)時容易出錯.兩組中每組中人數(shù)都是2,因此方法數(shù)為.9.A【解析】

先求出函數(shù)在處的切線方程,在同一直角坐標系內畫出函數(shù)和的圖象,利用數(shù)形結合進行求解即可.【詳解】當時,,所以函數(shù)在處的切線方程為:,令,它與橫軸的交點坐標為.在同一直角坐標系內畫出函數(shù)和的圖象如下圖的所示:利用數(shù)形結合思想可知:不等式對任意的恒成立,則實數(shù)k的取值范圍是.故選:A【點睛】本題考查了利用數(shù)形結合思想解決不等式恒成立問題,考查了導數(shù)的應用,屬于中檔題.10.A【解析】

畫出約束條件的可行域,利用目標函數(shù)的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因為的最大值為,所以在點處取得最大值,則,即.故選:A【點睛】本題主要考查線性規(guī)劃的應用,利用z的幾何意義,通過數(shù)形結合是解決本題的關鍵.11.A【解析】

先根據(jù)函數(shù)在區(qū)間內沒有最值求出或.再根據(jù)已知求出,判斷函數(shù)的單調性和零點情況得解.【詳解】因為函數(shù)在區(qū)間內沒有最值.所以,或解得或.又,所以.令.可得.且在上單調遞減.當時,,且,所以在上只有一個零點.所以正確結論的編號②④故選:A.【點睛】本題主要考查三角函數(shù)的圖象和性質,考查函數(shù)的零點問題,意在考查學生對這些知識的理解掌握水平.12.B【解析】由函數(shù)f(x)的圖象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上單調遞增,又g(0)=1-b<0,g(1)=e+2-b>0,根據(jù)函數(shù)的零點存在性定理可知,函數(shù)g(x)的零點所在的區(qū)間是(0,1),故選B.二、填空題:本題共4小題,每小題5分,共20分。13.811【解析】

畫出不等式組表示的平面區(qū)域,數(shù)形結合求得區(qū)域面積以及目標函數(shù)的最值.【詳解】不等式組表示的平面區(qū)域如下圖所示:數(shù)形結合可知,可行域為三角形,且底邊長,高為,故區(qū)域面積;令,變?yōu)?,顯然直線過時,z最大,故.故答案為:;11.【點睛】本題考查簡單線性規(guī)劃問題,涉及區(qū)域面積的求解,屬基礎題.14.【解析】

把已知等式變形,再由復數(shù)代數(shù)形式的乘除運算化簡,然后利用復數(shù)模的計算公式求解.【詳解】∵,∴,∴,故答案為:.【點睛】本小題主要考查復數(shù)除法運算,考查復數(shù)的模的求法,屬于基礎題.15.【解析】

根據(jù)三角形中位線證得,結合判斷出垂直平分,由此求得的值,結合求得的值.【詳解】∵,∴為中點,,∵,∴垂直平分,∴,即,∴,,即.故答案為:【點睛】本小題主要考查雙曲線離心率的求法,考查化歸與轉化的數(shù)學思想方法,屬于基礎題.16.【解析】

求出二項展開式的通項,令指數(shù)為零,求出參數(shù)的值,代入可得出展開式中的常數(shù)項;求出項的系數(shù),利用作商法可求出系數(shù)最大的項.【詳解】的展開式的通項為,令,得,所以,展開式中的常數(shù)項為;令,令,即,解得,,,因此,展開式中系數(shù)最大的項為.故答案為:;.【點睛】本題考查二項展開式中常數(shù)項的求解,同時也考查了系數(shù)最大項的求解,涉及展開式通項的應用,考查分析問題和解決問題的能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)直線l的普通方程為x+y-4=0.曲線C的直角坐標方程是圓:(x-)2+(y-1)2=4.(2)4【解析】

(1)將直線l參數(shù)方程中的消去,即可得直線l的普通方程,對曲線C的極坐標方程兩邊同時乘以,利用可得曲線C的直角坐標方程;(2)求出點到直線的距離,再求出的弦長,從而得出△MON的面積.【詳解】解:(1)由題意有,得,x+y=4,直線l的普通方程為x+y-4=0.因為ρ=4sin所以ρ=2sinθ+2cosθ,兩邊同時乘以得,ρ2=2ρsinθ+2ρcosθ,因為,所以x2+y2=2y+2x,即(x-)2+(y-1)2=4,∴曲線C的直角坐標方程是圓:(x-)2+(y-1)2=4.(2)∵原點O到直線l的距離直線l過圓C的圓心(,1),∴|MN|=2r=4,所以△MON的面積S=|MN|×d=4.【點睛】本題考查了直線與圓的極坐標方程與普通方程、參數(shù)方程與普通方程的互化知識,解題的關鍵是正確使用這一轉化公式,還考查了直線與圓的位置關系等知識.18.(1),;(2).【解析】

(1)令可求得的值,令,由得出,兩式相減可推導出數(shù)列為等比數(shù)列,確定該數(shù)列的公比,利用等比數(shù)列的通項公式可求得數(shù)列的通項公式,再利用對數(shù)的運算性質可得出數(shù)列的通項公式;(2)運用等差數(shù)列的求和公式,運用數(shù)列的分組求和和裂項相消求和,化簡可得.【詳解】(1)當時,,所以;當時,,得,即,所以,數(shù)列是首項為,公比為的等比數(shù)列,.;(2)由(1)知數(shù)列是首項為,公差為的等差數(shù)列,.,.所以.【點睛】本題考查數(shù)列的遞推式的運用,注意結合等比數(shù)列的定義和通項公式,考查數(shù)列的求和方法:分組求和法和裂項相消求和,考查運算能力,屬于中檔題.19.(1)證明見解析;(2).【解析】

(1)先求出,又由可判斷出在上單調遞減,故,令,記,利用導數(shù)求出的最小值即可;(2)由在上不單調轉化為在上有解,可得,令,分類討論求的最大值,再求解即可.【詳解】(1)已知,,由可得,又由,知在上單調遞減,令,記,則在上單調遞增;,在上單調遞增;,(2),,在上不單調,在上有正有負,在上有解,,,恒成立,記,則,記,,在上單調增,在上單調減.于是知(i)當即時,恒成立,在上單調增,,,.(ii)當時,,故不滿足題意.綜上所述,【點睛】本題主要考查了導數(shù)的綜合應用,考查了分類討論,轉化與化歸的思想,考查了學生的運算求解能力.20.(1)或;(2).【解析】

(1)利用絕對值的幾何意義,將不等式,轉化為不等式或或求解.(2)根據(jù)-2在R上恒成立,由絕對值三角不等式求得的最小值即可.【詳解】(1)原不等式等價于或或,解得:或,∴不等式的解集為或.(2)因為-2在R上恒成立,而,所以,解得,所以實數(shù)的取值范圍是.【點睛】本題主要考查絕對值不等式的解法和不等式恒成立問題,還考查了運算求解的能力,屬于中檔題.21.(Ⅰ)函數(shù)的單調增區(qū)間為,單調減區(qū)間為;(Ⅱ)證明見解析;(Ⅲ).【解析】

(Ⅰ)利用二次求導可得,所以在上為增函數(shù),進而可得函數(shù)的單調增區(qū)間為,單調減區(qū)間為;(Ⅱ)利用導數(shù)可得在區(qū)間上存在唯一零點,所以函數(shù)在遞減,在,遞增,則,進而可證;(Ⅲ)條件等價于對于恒成立,構造函數(shù),利用導數(shù)可得的單調性,即可得到的最小值為,再次構造函數(shù)(a),,利用導數(shù)得其單調區(qū)間,進而求得最大值.【詳解】(Ⅰ)當時,,則,所以,又因為,所以在上為增函數(shù),因為,所以當時,,為增函數(shù),當時,,為減函數(shù),即函數(shù)的單調增區(qū)間為,單調減區(qū)間為;(Ⅱ),則令,則(1),,所以在區(qū)間上存在唯一零點,設零點為,則,且,當時,,當,,,所以函數(shù)在遞減,在,遞增,,由,得,所以,由于,,從而;(Ⅲ)因為對于恒

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論