![新疆北京師范大學克拉瑪依附屬學校2022年高三最后一卷數(shù)學試卷含解析_第1頁](http://file4.renrendoc.com/view/963991f891f5338a12004212497d4e3f/963991f891f5338a12004212497d4e3f1.gif)
![新疆北京師范大學克拉瑪依附屬學校2022年高三最后一卷數(shù)學試卷含解析_第2頁](http://file4.renrendoc.com/view/963991f891f5338a12004212497d4e3f/963991f891f5338a12004212497d4e3f2.gif)
![新疆北京師范大學克拉瑪依附屬學校2022年高三最后一卷數(shù)學試卷含解析_第3頁](http://file4.renrendoc.com/view/963991f891f5338a12004212497d4e3f/963991f891f5338a12004212497d4e3f3.gif)
![新疆北京師范大學克拉瑪依附屬學校2022年高三最后一卷數(shù)學試卷含解析_第4頁](http://file4.renrendoc.com/view/963991f891f5338a12004212497d4e3f/963991f891f5338a12004212497d4e3f4.gif)
![新疆北京師范大學克拉瑪依附屬學校2022年高三最后一卷數(shù)學試卷含解析_第5頁](http://file4.renrendoc.com/view/963991f891f5338a12004212497d4e3f/963991f891f5338a12004212497d4e3f5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.山東煙臺蘋果因“果形端正、色澤艷麗、果肉甜脆、香氣濃郁”享譽國內外.據(jù)統(tǒng)計,煙臺蘋果(把蘋果近似看成球體)的直徑(單位:)服從正態(tài)分布,則直徑在內的概率為()附:若,則,.A.0.6826 B.0.8413 C.0.8185 D.0.95442.已知圓錐的高為3,底面半徑為,若該圓錐的頂點與底面的圓周都在同一個球面上,則這個球的體積與圓錐的體積的比值為()A. B. C. D.3.若函數(shù)在時取得極值,則()A. B. C. D.4.已知函數(shù)在上都存在導函數(shù),對于任意的實數(shù)都有,當時,,若,則實數(shù)的取值范圍是()A. B. C. D.5.已知數(shù)列滿足,且,則的值是()A. B. C.4 D.6.已知x,y滿足不等式組,則點所在區(qū)域的面積是()A.1 B.2 C. D.7.若復數(shù)滿足,其中為虛數(shù)單位,是的共軛復數(shù),則復數(shù)()A. B. C.4 D.58.有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計),底面直徑為cm,高度為cm,現(xiàn)往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝()(附:)A.個 B.個 C.個 D.個9.執(zhí)行如圖所示的程序框圖,若輸出的,則①處應填寫()A. B. C. D.10.已知向量,,且,則()A. B. C.1 D.211.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的整數(shù)的最大值為()A.7 B.15 C.31 D.6312.正方體,是棱的中點,在任意兩個中點的連線中,與平面平行的直線有幾條()A.36 B.21 C.12 D.6二、填空題:本題共4小題,每小題5分,共20分。13.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機選一匹進行一場比賽,則田忌的馬獲勝的概率為__________.14.的展開式中的系數(shù)為________.15.已知數(shù)列與均為等差數(shù)列(),且,則______.16.一個算法的偽代碼如圖所示,執(zhí)行此算法,最后輸出的T的值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知滿足,且,求的值及的面積.(從①,②,③這三個條件中選一個,補充到上面問題中,并完成解答.)18.(12分)已知橢圓的左焦點為F,上頂點為A,直線AF與直線垂直,垂足為B,且點A是線段BF的中點.(I)求橢圓C的方程;(II)若M,N分別為橢圓C的左,右頂點,P是橢圓C上位于第一象限的一點,直線MP與直線交于點Q,且,求點P的坐標.19.(12分)已知函數(shù).(1)若關于的不等式的整數(shù)解有且僅有一個值,當時,求不等式的解集;(2)已知,若,使得成立,求實數(shù)的取值范圍.20.(12分)已知函數(shù),.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.21.(12分)如圖,四棱錐中,底面是菱形,對角線交于點為棱的中點,.求證:(1)平面;(2)平面平面.22.(10分)已知函數(shù)(Ⅰ)若,求曲線在點處的切線方程;(Ⅱ)若在上恒成立,求實數(shù)的取值范圍;(Ⅲ)若數(shù)列的前項和,,求證:數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
根據(jù)服從的正態(tài)分布可得,,將所求概率轉化為,結合正態(tài)分布曲線的性質可求得結果.【詳解】由題意,,,則,,所以,.故果實直徑在內的概率為0.8185.故選:C【點睛】本題考查根據(jù)正態(tài)分布求解待定區(qū)間的概率問題,考查了正態(tài)曲線的對稱性,屬于基礎題.2.B【解析】
計算求半徑為,再計算球體積和圓錐體積,計算得到答案.【詳解】如圖所示:設球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【點睛】本題考查了圓錐,球體積,圓錐的外接球問題,意在考查學生的計算能力和空間想象能力.3.D【解析】
對函數(shù)求導,根據(jù)函數(shù)在時取得極值,得到,即可求出結果.【詳解】因為,所以,又函數(shù)在時取得極值,所以,解得.故選D【點睛】本題主要考查導數(shù)的應用,根據(jù)函數(shù)的極值求參數(shù)的問題,屬于常考題型.4.B【解析】
先構造函數(shù),再利用函數(shù)奇偶性與單調性化簡不等式,解得結果.【詳解】令,則當時,,又,所以為偶函數(shù),從而等價于,因此選B.【點睛】本題考查利用函數(shù)奇偶性與單調性求解不等式,考查綜合分析求解能力,屬中檔題.5.B【解析】由,可得,所以數(shù)列是公比為的等比數(shù)列,所以,則,則,故選B.點睛:本題考查了等比數(shù)列的概念,等比數(shù)列的通項公式及等比數(shù)列的性質的應用,試題有一定的技巧,屬于中檔試題,解決這類問題的關鍵在于熟練掌握等比數(shù)列的有關公式并能靈活運用,尤其需要注意的是,等比數(shù)列的性質和在使用等比數(shù)列的前n項和公式時,應該要分類討論,有時還應善于運用整體代換思想簡化運算過程.6.C【解析】
畫出不等式表示的平面區(qū)域,計算面積即可.【詳解】不等式表示的平面區(qū)域如圖:直線的斜率為,直線的斜率為,所以兩直線垂直,故為直角三角形,易得,,,,所以陰影部分面積.故選:C.【點睛】本題考查不等式組表示的平面區(qū)域面積的求法,考查數(shù)形結合思想和運算能力,屬于??碱}.7.D【解析】
根據(jù)復數(shù)的四則運算法則先求出復數(shù)z,再計算它的模長.【詳解】解:復數(shù)z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故選D.【點睛】本題主要考查了復數(shù)的計算問題,要求熟練掌握復數(shù)的四則運算以及復數(shù)長度的計算公式,是基礎題.8.C【解析】
計算球心連線形成的正四面體相對棱的距離為cm,得到最上層球面上的點距離桶底最遠為cm,得到不等式,計算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側面相切,且相鄰四個球兩兩相切,這樣,相鄰的四個球的球心連線構成棱長為cm的正面體,易求正四面體相對棱的距離為cm,每裝兩個球稱為“一層”,這樣裝層球,則最上層球面上的點距離桶底最遠為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個球.故選:【點睛】本題考查了圓柱和球的綜合問題,意在考查學生的空間想象能力和計算能力.9.B【解析】
模擬程序框圖運行分析即得解.【詳解】;;.所以①處應填寫“”故選:B【點睛】本題主要考查程序框圖,意在考查學生對這些知識的理解掌握水平.10.A【解析】
根據(jù)向量垂直的坐標表示列方程,解方程求得的值.【詳解】由于向量,,且,所以解得.故選:A【點睛】本小題主要考查向量垂直的坐標表示,屬于基礎題.11.B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時,則的最大值為15,故選B.考點:程序框圖.12.B【解析】
先找到與平面平行的平面,利用面面平行的定義即可得到.【詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.【點睛】本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡單的組合問題,是一中檔題.二、填空題:本題共4小題,每小題5分,共20分。13..【解析】分析:由題意結合古典概型計算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對齊王的下等馬,田忌的上等馬對齊王的下等馬,田忌的上等馬對齊王的中等馬,結合古典概型公式可得,田忌的馬獲勝的概率為.點睛:有關古典概型的概率問題,關鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時,用列舉法把所有基本事件一一列出時,要做到不重復、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數(shù)原理的正確使用.14.80.【解析】
只需找到展開式中的項的系數(shù)即可.【詳解】展開式的通項為,令,則,故的展開式中的系數(shù)為80.故答案為:80.【點睛】本題考查二項式定理的應用,涉及到展開式中的特殊項系數(shù),考查學生的計算能力,是一道容易題.15.20【解析】
設等差數(shù)列的公差為,由數(shù)列為等差數(shù)列,且,根據(jù)等差中項的性質可得,,解方程求出公差,代入等差數(shù)列的通項公式即可求解.【詳解】設等差數(shù)列的公差為,由數(shù)列為等差數(shù)列知,,因為,所以,解得,所以數(shù)列的通項公式為,所以.故答案為:【點睛】本題考查等差數(shù)列的概念及其通項公式和等差中項;考查運算求解能力;等差中項的運用是求解本題的關鍵;屬于基礎題.16.【解析】
由程序中的變量、各語句的作用,結合流程圖所給的順序,模擬程序的運行,即可得到答案.【詳解】根據(jù)題中的程序框圖可得:,執(zhí)行循環(huán)體,,不滿足條件,執(zhí)行循環(huán)體,,此時,滿足條件,退出循環(huán),輸出的值為.故答案為:【點睛】本題主要考查了程序和算法,依次寫出每次循環(huán)得到的,的值是解題的關鍵,屬于基本知識的考查.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.見解析【解析】
選擇①時:,,計算,根據(jù)正弦定理得到,計算面積得到答案;選擇②時,,,故,為鈍角,故無解;選擇③時,,根據(jù)正弦定理解得,,根據(jù)正弦定理得到,計算面積得到答案.【詳解】選擇①時:,,故.根據(jù)正弦定理:,故,故.選擇②時,,,故,為鈍角,故無解.選擇③時,,根據(jù)正弦定理:,故,解得,.根據(jù)正弦定理:,故,故.【點睛】本題考查了三角恒等變換,正弦定理,面積公式,意在考查學生的計算能力和綜合應用能力.18.(I).(II)【解析】
(I)寫出坐標,利用直線與直線垂直,得到.求出點的坐標代入,可得到的一個關系式,由此求得和的值,進而求得橢圓方程.(II)設出點的坐標,由此寫出直線的方程,從而求得點的坐標,代入,化簡可求得點的坐標.【詳解】(I)∵橢圓的左焦點,上頂點,直線AF與直線垂直∴直線AF的斜率,即①又點A是線段BF的中點∴點的坐標為又點在直線上∴②∴由①②得:∴∴橢圓的方程為.(II)設由(I)易得頂點M、N的坐標為∴直線MP的方程是:由得:又點P在橢圓上,故∴∴∴或(舍)∴∴點P的坐標為【點睛】本小題主要考查直線和圓錐曲線的位置關系,考查兩直線垂直的條件,考查向量數(shù)量積的運算.屬于中檔題.在解題過程中,首先閱讀清楚題意,題目所敘述的坐標、所敘述的直線是怎么得到的,向量的數(shù)量積對應的坐標都有哪一些,應該怎么得到,這些在讀題的時候需要分析清楚.19.(1)(2)【解析】
(1)求解不等式,結合整數(shù)解有且僅有一個值,可得,分類討論,求解不等式,即得解;(2)轉化,使得成立為,利用不等式性質,求解二次函數(shù)最小值,代入解不等式即可.【詳解】(1)不等式,即,所以,由,解得.因為,所以,當時,,不等式等價于或或即或或,故,故不等式的解集為.(2)因為,由,可得,又由,使得成立,則,解得或.故實數(shù)的取值范圍為.【點睛】本題考查了絕對值不等式的求解和恒成立問題,考查了學生轉化劃歸,分類討論,數(shù)學運算的能力,屬于中檔題.20.(Ⅰ);(Ⅱ)最小值和最大值.【解析】試題分析:(1)由已知利用兩角和與差的三角函數(shù)公式及倍角公式將的解析式化為一個復合角的三角函數(shù)式,再利用正弦型函數(shù)的最小正周期計算公式,即可求得函數(shù)的最小正周期;(2)由(1)得函數(shù),分析它在閉區(qū)間上的單調性,可知函數(shù)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),由此即可求得函數(shù)在閉區(qū)間上的最大值和最小值.也可以利用整體思想求函數(shù)在閉區(qū)間上的最大值和最小值.由已知,有的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年塑料網項目可行性研究報告
- 中國防水防油工作服項目投資可行性研究報告
- 2025年中國泡茶機行業(yè)市場深度評估及投資戰(zhàn)略規(guī)劃報告
- 電子商務平臺在旅游行業(yè)的應用模式對比
- 構建安全可靠的網絡安全防護體系
- 關于蔬菜倉儲合同范本
- 企業(yè)贈與合同范本
- 58同城合同范例
- 出口合同范本格式
- 現(xiàn)代商場的智能LED燈光設計案例解析報告
- 2022年4月自考00277行政管理學試題及答案含解析
- 消防設施安全檢查表
- 《網絡應急響應預案》課件
- 安全生產風險評估培訓課件
- 跟單員工作職責與流程
- 氣流組織模擬分析報告教程
- 教科版小學科學五年級【上冊】全冊教案
- 車間消防安全知識培訓課件
- 勞動法概述勞動法與新經濟業(yè)態(tài)的結合
- 孤殘兒童護理員兒童護理工作基礎知識課件
- 九年級短跑2 公開課教學設計
評論
0/150
提交評論