2022屆湖北省麻城市實(shí)驗(yàn)高中高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第1頁
2022屆湖北省麻城市實(shí)驗(yàn)高中高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第2頁
2022屆湖北省麻城市實(shí)驗(yàn)高中高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第3頁
2022屆湖北省麻城市實(shí)驗(yàn)高中高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第4頁
2022屆湖北省麻城市實(shí)驗(yàn)高中高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是雙曲線的兩個(gè)焦點(diǎn),過點(diǎn)且垂直于軸的直線與相交于兩點(diǎn),若,則的內(nèi)切圓半徑為()A. B. C. D.2.已知函數(shù)(,)的一個(gè)零點(diǎn)是,函數(shù)圖象的一條對稱軸是直線,則當(dāng)取得最小值時(shí),函數(shù)的單調(diào)遞增區(qū)間是()A.() B.()C.() D.()3.已知橢圓+=1(a>b>0)與直線交于A,B兩點(diǎn),焦點(diǎn)F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.4.已知向量,若,則實(shí)數(shù)的值為()A. B. C. D.5.由曲線圍成的封閉圖形的面積為()A. B. C. D.6.已知實(shí)數(shù)、滿足不等式組,則的最大值為()A. B. C. D.7.我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測雨”題:在下雨時(shí),用一個(gè)圓臺形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺體的體積公式).A.2寸 B.3寸 C.4寸 D.5寸8.已知復(fù)數(shù)(1+i)(a+i)為純虛數(shù)(i為虛數(shù)單位),則實(shí)數(shù)a=()A.-1 B.1 C.0 D.29.已知函數(shù)f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.10.已知非零向量,滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件解:11.已知函數(shù)是奇函數(shù),且,若對,恒成立,則的取值范圍是()A. B. C. D.12.已知拋物線上的點(diǎn)到其焦點(diǎn)的距離比點(diǎn)到軸的距離大,則拋物線的標(biāo)準(zhǔn)方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.三棱錐中,點(diǎn)是斜邊上一點(diǎn).給出下列四個(gè)命題:①若平面,則三棱錐的四個(gè)面都是直角三角形;②若,,,平面,則三棱錐的外接球體積為;③若,,,在平面上的射影是內(nèi)心,則三棱錐的體積為2;④若,,,平面,則直線與平面所成的最大角為.其中正確命題的序號是__________.(把你認(rèn)為正確命題的序號都填上)14.已知雙曲線的兩條漸近線方程為,若頂點(diǎn)到漸近線的距離為1,則雙曲線方程為.15.正項(xiàng)等比數(shù)列|滿足,且成等差數(shù)列,則取得最小值時(shí)的值為_____16.點(diǎn)是曲線()圖象上的一個(gè)定點(diǎn),過點(diǎn)的切線方程為,則實(shí)數(shù)k的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn),直線與曲線交于,兩點(diǎn),求的值.18.(12分)如圖,四棱錐中,側(cè)面為等腰直角三角形,平面.(1)求證:平面;(2)求直線與平面所成的角的正弦值.19.(12分)武漢有“九省通衢”之稱,也稱為“江城”,是國家歷史文化名城.其中著名的景點(diǎn)有黃鶴樓、戶部巷、東湖風(fēng)景區(qū)等等.(1)為了解“五·一”勞動節(jié)當(dāng)日江城某旅游景點(diǎn)游客年齡的分布情況,從年齡在22歲到52歲的游客中隨機(jī)抽取了1000人,制成了如圖的頻率分布直方圖:現(xiàn)從年齡在內(nèi)的游客中,采用分層抽樣的方法抽取10人,再從抽取的10人中隨機(jī)抽取4人,記4人中年齡在內(nèi)的人數(shù)為,求;(2)為了給游客提供更舒適的旅游體驗(yàn),該旅游景點(diǎn)游船中心計(jì)劃在2020年勞動節(jié)當(dāng)日投入至少1艘至多3艘型游船供游客乘坐觀光.由2010到2019這10年間的數(shù)據(jù)資料顯示每年勞動節(jié)當(dāng)日客流量(單位:萬人)都大于1.將每年勞動節(jié)當(dāng)日客流量數(shù)據(jù)分成3個(gè)區(qū)間整理得表:勞動節(jié)當(dāng)日客流量頻數(shù)(年)244以這10年的數(shù)據(jù)資料記錄的3個(gè)區(qū)間客流量的頻率作為每年客流量在該區(qū)間段發(fā)生的概率,且每年勞動節(jié)當(dāng)日客流量相互獨(dú)立.該游船中心希望投入的型游船盡可能被充分利用,但每年勞動節(jié)當(dāng)日型游船最多使用量(單位:艘)要受當(dāng)日客流量(單位:萬人)的影響,其關(guān)聯(lián)關(guān)系如下表:勞動節(jié)當(dāng)日客流量型游船最多使用量123若某艘型游船在勞動節(jié)當(dāng)日被投入且被使用,則游船中心當(dāng)日可獲得利潤3萬元;若某艘型游船勞動節(jié)當(dāng)日被投入?yún)s不被使用,則游船中心當(dāng)日虧損0.5萬元.記(單位:萬元)表示該游船中心在勞動節(jié)當(dāng)日獲得的總利潤,的數(shù)學(xué)期望越大游船中心在勞動節(jié)當(dāng)日獲得的總利潤越大,問該游船中心在2020年勞動節(jié)當(dāng)日應(yīng)投入多少艘型游船才能使其當(dāng)日獲得的總利潤最大?20.(12分)在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系.(1)求曲線C的極坐標(biāo)方程;(2)直線(t為參數(shù))與曲線C交于A,B兩點(diǎn),求最大時(shí),直線l的直角坐標(biāo)方程.21.(12分)在平面直角坐標(biāo)系中,已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是拋物線上上一點(diǎn),且點(diǎn)的橫坐標(biāo)為,.(1)求拋物線的方程;(2)過點(diǎn)的直線與拋物線交于、兩點(diǎn),過點(diǎn)且與直線垂直的直線與準(zhǔn)線交于點(diǎn),設(shè)的中點(diǎn)為,若、、四點(diǎn)共圓,求直線的方程.22.(10分)在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求曲線的普通方程和直線的直角坐標(biāo)方程;(2)若射線的極坐標(biāo)方程為().設(shè)與相交于點(diǎn),與相交于點(diǎn),求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

首先由求得雙曲線的方程,進(jìn)而求得三角形的面積,再由三角形的面積等于周長乘以內(nèi)切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長為,設(shè)的內(nèi)切圓的半徑為,則,故選:B【點(diǎn)睛】本題考查雙曲線的定義、方程和性質(zhì),考查三角形的內(nèi)心的概念,考查了轉(zhuǎn)化的思想,屬于中檔題.2.B【解析】

根據(jù)函數(shù)的一個(gè)零點(diǎn)是,得出,再根據(jù)是對稱軸,得出,求出的最小值與對應(yīng)的,寫出即可求出其單調(diào)增區(qū)間.【詳解】依題意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值為.因?yàn)?,所以(?又,所以,所以,令(),則().因此,當(dāng)取得最小值時(shí),的單調(diào)遞增區(qū)間是().故選:B【點(diǎn)睛】此題考查三角函數(shù)的對稱軸和對稱點(diǎn),在對稱軸處取得最值,對稱點(diǎn)處函數(shù)值為零,屬于較易題目.3.A【解析】

聯(lián)立直線與橢圓方程求出交點(diǎn)A,B兩點(diǎn),利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設(shè)A(0,a),B(-b,0),由題意可知,·=0,因?yàn)?,,由平面向量垂直的坐?biāo)表示可得,,因?yàn)?,所以a2-c2=ac,兩邊同時(shí)除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點(diǎn)睛】本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標(biāo)表示;考查運(yùn)算求解能力和知識遷移能力;利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式是求解本題的關(guān)鍵;屬于中檔題、??碱}型.4.D【解析】

由兩向量垂直可得,整理后可知,將已知條件代入后即可求出實(shí)數(shù)的值.【詳解】解:,,即,將和代入,得出,所以.故選:D.【點(diǎn)睛】本題考查了向量的數(shù)量積,考查了向量的坐標(biāo)運(yùn)算.對于向量問題,若已知垂直,通常可得到兩個(gè)向量的數(shù)量積為0,繼而結(jié)合條件進(jìn)行化簡、整理.5.A【解析】

先計(jì)算出兩個(gè)圖像的交點(diǎn)分別為,再利用定積分算兩個(gè)圖形圍成的面積.【詳解】封閉圖形的面積為.選A.【點(diǎn)睛】本題考察定積分的應(yīng)用,屬于基礎(chǔ)題.解題時(shí)注意積分區(qū)間和被積函數(shù)的選取.6.A【解析】

畫出不等式組所表示的平面區(qū)域,結(jié)合圖形確定目標(biāo)函數(shù)的最優(yōu)解,代入即可求解,得到答案.【詳解】畫出不等式組所表示平面區(qū)域,如圖所示,由目標(biāo)函數(shù),化為直線,當(dāng)直線過點(diǎn)A時(shí),此時(shí)直線在y軸上的截距最大,目標(biāo)函數(shù)取得最大值,又由,解得,所以目標(biāo)函數(shù)的最大值為,故選A.【點(diǎn)睛】本題主要考查簡單線性規(guī)劃求解目標(biāo)函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標(biāo)函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計(jì)算能力,屬于基礎(chǔ)題.7.B【解析】試題分析:根據(jù)題意可得平地降雨量,故選B.考點(diǎn):1.實(shí)際應(yīng)用問題;2.圓臺的體積.8.B【解析】

化簡得到z=a-1+a+1【詳解】z=1+ia+i=a-1+a+1i為純虛數(shù),故a-1=0故選:B.【點(diǎn)睛】本題考查了根據(jù)復(fù)數(shù)類型求參數(shù),意在考查學(xué)生的計(jì)算能力.9.A【解析】

先通過降冪公式和輔助角法將函數(shù)轉(zhuǎn)化為,再求最值.【詳解】已知函數(shù)f(x)=sin2x+sin2(x),=,=,因?yàn)?,所以f(x)的最小值為.故選:A【點(diǎn)睛】本題主要考查倍角公式及兩角和與差的三角函數(shù)的逆用,還考查了運(yùn)算求解的能力,屬于中檔題.10.C【解析】

根據(jù)向量的數(shù)量積運(yùn)算,由向量的關(guān)系,可得選項(xiàng).【詳解】,,∴等價(jià)于,故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算和命題的充分、必要條件,屬于基礎(chǔ)題.11.A【解析】

先根據(jù)函數(shù)奇偶性求得,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,利用函數(shù)單調(diào)性求解不等式即可.【詳解】因?yàn)楹瘮?shù)是奇函數(shù),所以函數(shù)是偶函數(shù).,即,又,所以,.函數(shù)的定義域?yàn)?,所以,則函數(shù)在上為單調(diào)遞增函數(shù).又在上,,所以為偶函數(shù),且在上單調(diào)遞增.由,可得,對恒成立,則,對恒成立,,得,所以的取值范圍是.故選:A.【點(diǎn)睛】本題考查利用函數(shù)單調(diào)性求解不等式,根據(jù)方程組法求函數(shù)解析式,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,屬壓軸題.12.B【解析】

由拋物線的定義轉(zhuǎn)化,列出方程求出p,即可得到拋物線方程.【詳解】由拋物線y2=2px(p>0)上的點(diǎn)M到其焦點(diǎn)F的距離比點(diǎn)M到y(tǒng)軸的距離大,根據(jù)拋物線的定義可得,,所以拋物線的標(biāo)準(zhǔn)方程為:y2=2x.故選B.【點(diǎn)睛】本題考查了拋物線的簡單性質(zhì)的應(yīng)用,拋物線方程的求法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.①②③【解析】

對①,由線面平行的性質(zhì)可判斷正確;對②,三棱錐外接球可看作正方體的外接球,結(jié)合外接球半徑公式即可求解;對③,結(jié)合題意作出圖形,由勾股定理和內(nèi)接圓對應(yīng)面積公式求出錐體的高,則可求解;對④,由動點(diǎn)分析可知,當(dāng)點(diǎn)與點(diǎn)重合時(shí),直線與平面所成的角最大,結(jié)合幾何關(guān)系可判斷錯(cuò)誤;【詳解】對于①,因?yàn)槠矫妫?,,,又,所以平面,所以,故四個(gè)面都是直角三角形,∴①正確;對于②,若,,,平面,∴三棱錐的外接球可以看作棱長為4的正方體的外接球,∴,,∴體積為,∴②正確;對于③,設(shè)內(nèi)心是,則平面,連接,則有,又內(nèi)切圓半徑,所以,,故,∴三棱錐的體積為,∴③正確;對于④,∵若,平面,則直線與平面所成的角最大時(shí),點(diǎn)與點(diǎn)重合,在中,,∴,即直線與平面所成的最大角為,∴④不正確,故答案為:①②③.【點(diǎn)睛】本題考查立體幾何基本關(guān)系的應(yīng)用,線面垂直的性質(zhì)及判定、錐體體積、外接球半徑求解,線面角的求解,屬于中檔題14.【解析】由已知,即,取雙曲線頂點(diǎn)及漸近線,則頂點(diǎn)到該漸近線的距離為,由題可知,所以,則所求雙曲線方程為.15.2【解析】

先由題意列出關(guān)于的方程,求得的通項(xiàng)公式,再表示出即可求解.【詳解】解:設(shè)公比為,且,時(shí),上式有最小值,故答案為:2.【點(diǎn)睛】本題考查等比數(shù)列、等差數(shù)列的有關(guān)性質(zhì)以及等比數(shù)列求積、求最值的有關(guān)運(yùn)算,中檔題.16.1【解析】

求出導(dǎo)函數(shù),由切線斜率為4即導(dǎo)數(shù)為4求出切點(diǎn)橫坐標(biāo),再由切線方程得縱坐標(biāo)后可求得.【詳解】設(shè),由題意,∴,,,即,∴,.故答案為:1.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,函數(shù)圖象某點(diǎn)處的切線的斜率就是該點(diǎn)處導(dǎo)數(shù)值.本題屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】

(1)利用參數(shù)方程、普通方程、極坐標(biāo)方程間的互化公式即可;(2)將直線參數(shù)方程代入圓的普通方程,可得,,而根據(jù)直線參數(shù)方程的幾何意義,知,代入即可解決.【詳解】(1)直線的參數(shù)方程為(為參數(shù)),消去;得曲線的極坐標(biāo)方程為.由,,,可得,即曲線的直角坐標(biāo)方程為;(2)將直線的參數(shù)方程(為參數(shù))代入的方程,可得,,設(shè),是點(diǎn)對應(yīng)的參數(shù)值,,,則.【點(diǎn)睛】本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,直線參數(shù)方程的幾何意義,是一道容易題.18.(1)見解析(2)【解析】

(1)根據(jù)平面,利用線面垂直的定義可得,再由,根據(jù)線面垂直的判定定理即可證出.(2)取的中點(diǎn),連接,以為坐標(biāo)原點(diǎn),分別為正半軸建立空間直角坐標(biāo)系求出平面的一個(gè)法向量,利用空間向量法即可求解.【詳解】因?yàn)槠矫嫫矫?,所以由為等腰直角三角形,所以又,故平?取的中點(diǎn),連接,因?yàn)?,所以因?yàn)槠矫?,所以平面所以平面如圖,以為坐標(biāo)原點(diǎn),分別為正半軸建立空間直角坐標(biāo)系則,又,所以且于是設(shè)平面的法向量為,則令得平面的一個(gè)法向量設(shè)直線與平面所成的角為,則【點(diǎn)睛】本題考查了線面垂直的定義、判定定理以及空間向量法求線面角,屬于中檔題.19.(1);(2)投入3艘型游船使其當(dāng)日獲得的總利潤最大【解析】

(1)首先計(jì)算出在,內(nèi)抽取的人數(shù),然后利用超幾何分布概率計(jì)算公式,計(jì)算出.(2)分別計(jì)算出投入艘游艇時(shí),總利潤的期望值,由此確定當(dāng)日游艇投放量.【詳解】(1)年齡在內(nèi)的游客人數(shù)為150,年齡在內(nèi)的游客人數(shù)為100;若采用分層抽樣的方法抽取10人,則年齡在內(nèi)的人數(shù)為6人,年齡在內(nèi)的人數(shù)為4人.可得.(2)①當(dāng)投入1艘型游船時(shí),因客流量總大于1,則(萬元).②當(dāng)投入2艘型游船時(shí),若,則,此時(shí);若,則,此時(shí);此時(shí)的分布列如下表:2.56此時(shí)(萬元).③當(dāng)投入3艘型游船時(shí),若,則,此時(shí);若,則,此時(shí);若,則,此時(shí);此時(shí)的分布列如下表:25.59此時(shí)(萬元).由于,則該游船中心在2020年勞動節(jié)當(dāng)日應(yīng)投入3艘型游船使其當(dāng)日獲得的總利潤最大.【點(diǎn)睛】本小題主要考查分層抽樣,考查超幾何分布概率計(jì)算公式,考查隨機(jī)變量分布列和期望的求法,考查分析與思考問題的能力,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.20.(1);(2).【解析】

(1)利用消去參數(shù),得到曲線的普通方程,再將,代入普通方程,即可求出結(jié)論;(2)由(1)得曲線表示圓,直線曲線C交于A,B兩點(diǎn),最大值為圓的直徑,直線過圓心,即可求出直線的方程.【詳解】(1)由曲線C的參數(shù)方程(為參數(shù)),可得曲線C的普通方程為,因?yàn)?,所以曲線C的極坐標(biāo)方程為,即.(2)因?yàn)橹本€(t為參數(shù))表

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論